EE 123 Discussion Section 6

Frank Ong
March 14th, 2016
Plan

• Sparse FFT
• Magnitude Filter Design with convex optimization
Sparse FFT

• Given a length-N signal,
• FFT takes $O(N \log N)$ time to compute its DFT

• What if our DFT is k-sparse, ie, has only k non-zero entries,
• How much faster can we compute the DFT?
Sparse FFT

• Given a length-N signal,
• FFT takes $O(N \log N)$ time to compute its DFT

• What if our DFT is k-sparse, ie, has only k non-zero entries,
• How much faster can we compute the DFT?
• $O(k \log k)$ if non-zero locations are randomized

The FFAST algorithm: https://www.eecs.berkeley.edu/~kannanr/project_ffft.html
Three Ideas behind FFAST

• Sparse spectrum does not alias much
• 1-sparse DFT is easy
• Different sampling factor gives different aliasing pattern

Uses basic DSP sampling theory
Aliasing with Dense Spectrum

2D Signal

2D Spectrum
Aliasing with Dense Spectrum

• Everything gets aliased on top of each other
Aliasing with Sparse Spectrum

2D Signal

2D Spectrum
Aliasing with Sparse Spectrum

- Most entries do not have aliasing!
1-Sparse DFT

\[X[k] = \delta[k - l] \]
1-Sparse DFT

\[X[k] = \delta[k - l] \]

\[x[n] = e^{j \frac{2\pi}{N} ln} \]
1-Sparse DFT

\[X[k] = \delta[k - l] \]

\[x[n] = e^{j \frac{2\pi}{N} ln} \]

Magnitude

Phase

Slope = location
1-Sparse DFT

\[X[k] = \delta[k - l] \]

\[x[n] = e^{j \frac{2\pi}{N} ln} \]

- For noise-less, needs only 2 samples,

\[\angle(x[1]x^*[0]) = \frac{2\pi}{N} l \]

- Constant computation time
Different subsampling produces different aliasing

Sparse spectrum

0 1 3
Different subsampling produces different aliasing

Sparse spectrum

Subsampling by 3 in signal domain
Different subsampling produces different aliasing

Sparse spectrum

Subsampling by 3 in signal domain
Subsampling by 2 in signal domain
Different subsampling produces different aliasing

Sparse spectrum

0 1 3

Subsampling by 3 in signal domain
Subsampling by 2 in signal domain

• Red and green are not aliased for different sampling factors
Combining three ideas

Sparse spectrum

0 1 3
Combining three ideas

Sparse spectrum

Subsampling by 3 in signal domain

Subsampling by 2 in signal domain
Combining three ideas

Sparse spectrum

Subsampling by 3 in signal domain

Subsampling by 2 in signal domain

Shift sampling pattern by 1

Shift sampling pattern by 1
Combining three ideas

Sparse spectrum

Can recover red and green locations via phase differences

Subsampling by 3 in signal domain

Subsampling by 2 in signal domain

Shift sampling pattern by 1

Shift sampling pattern by 1
Combining three ideas

Sparse spectrum

Can peel off red and green

Subsampling by 3 in signal domain

Subsampling by 2 in signal domain

Shift sampling pattern by 1

$e^{j2\pi 3/6}$

$e^{j2\pi 3/6}$
Combining three ideas

Sparse spectrum

Can recover blue location via phase differences

Subsampling by 3 in signal domain

Subsampling by 2 in signal domain

\(e^{j\frac{2\pi}{6}} \)

\(e^{j\frac{3\pi}{2}} \)

Shift sampling pattern by 1

Shift sampling pattern by 1
Combining three ideas

Sparse spectrum

0 1 3

Recovered all sparse entries

Subsampling by 3 in signal domain
Subsampling by 2 in signal domain

Shift sampling pattern by 1
Shift sampling pattern by 1
FFAST Architecture

Sampling factor: \(f_i \sim k \)
Number of stages: \(\sim 3 \)
Computational complexity: \(O(k \log k) \)
Sampling Factors

• How to pick sampling factors that gives “different” aliasing patterns?
 • Does undersample by 2 and 4 work?
Sampling Factors

• How to pick sampling factors that gives “different” aliasing patterns?
 • Does undersample by 2 and 4 work?
 • No, undersampling by 4 does not give additional info.

• Chinese Remainder Theorem:
 • Factors should be relatively co-prime
 • For example, subsample by 5, 6, and 7
Theoretical Guarantee

• Proof techniques from coding theory
• The FFAST algorithm is fast:
 • Uses <4 k samples
 • $O(k \log k)$ computation complexity

• Trades off robustness to noise compared to compressed sensing

• For more detail:
 https://www.eecs.berkeley.edu/~kannanr/project_ffft.html
The Art of Filter Design

Frank Ong
Filter Design

- Given an ideal filter response profile

\[H_{\text{ideal}}(z) = \sum_{n} h[n] z^{-n} \]

- How can you design \(h[n] \) to match \(H_{\text{ideal}}(z) \)?
Reduce to a linear problem

• Key observation:
 • Filter response is **linear** in $h[n]$

$$
\sum_{n} h[n] z^{-n}
$$
Reduce to a linear problem

- Key observation:
 - Filter response is \textbf{linear} in $h[n]$

\[
\sum_{n} h[n]z^{-n} = z^T h
\]

\[
z = [1 \ z^{-1} \ z^{-2} \ldots \ z^{-n}]^T
\]

\[
h = [h[0] \ h[1] \ h[2] \ldots \ h[n]]^T
\]
Filter design as a linear program

- Discretize z into z_i

- Find h such that for all z_i you care about

$$-\delta \leq z_i^T h - H_{\text{ideal}}(z_i) \leq \delta$$
Filter design as a linear program

• Discretize z into z_i

• Find h such that for all z_i you care about

$$-\delta \leq z_i^T h - H_{\text{ideal}}(z_i) \leq \delta$$

• This is a linear program
Magnitude filter design

• Oftentimes, we don’t care about the phase of our filter
Magnitude filter design

• Oftentimes, we don’t care about the phase of our filter
• Given an ideal magnitude filter response profile

\[|H_{\text{ideal}}(z)| = |\sum_n h[n] z^{-n}| \]

• How can you design \(h[n] \) to match \(|H_{\text{ideal}}(z)| \)?
Magnitude filter design

- Oftentimes, we don’t care about the phase of our filter
- Given an ideal magnitude filter response profile

\[|H_{\text{ideal}}(z)| = |\sum_{n} h[n] z^{-n}| \]

- How can you design \(h[n] \) to match \(|H_{\text{ideal}}(z)| \)?

- Is \(h[n] \) still linear in magnitude response?
Reduce to a quadratic problem

• Key observation:
 • Magnitude filter response is \textbf{quadratic} in $h[n]$

\[
\left| \sum_{n} h[n] z^{-n} \right|^2
\]
Reduce to a quadratic problem

• Key observation:
 • Magnitude filter response is \textbf{quadratic} in $h[n]$

\[
\left| \sum_{n} h[n] z^{-n} \right|^2 = |z^T h|^2
\]
Reduce to a quadratic problem

• Key observation:
 • Magnitude filter response is **quadratic** in \(h[n] \)

\[
\left| \sum_n h[n] z^{-n} \right|^2 = \left| z^T h \right|^2 = z^T hh^T z
\]
Reduce to a quadratic problem

• Key observation:
 • Magnitude filter response is \textbf{quadratic} in $h[n]$

\[
\left| \sum_{n} h[n] z^{-n} \right|^2 = |z^T h|^2 = z^T h h^T z
\]

\[
h h^T = \begin{pmatrix}
h[0]h[0] & h[0]h[1] & h[0]h[2] \\
\end{pmatrix}
\]
Filter design as a rank-1 quadratic program

- Discretize z into z_i

- Find h such that for all z_i you care about

$$-\delta \leq z_i^T h h^T z_i - |H_{\text{ideal}}(z_i)|^2 \leq \delta$$
Filter design as a rank-1 quadratic program

- Discretize z into z_i

- Find h such that for all z_i you care about

\[-\delta \leq z_i^T H z_i - |H_{\text{ideal}}(z_i)|^2 \leq \delta\]

\[H = hh^T\]
Filter design as a rank-1 quadratic program

- Discretize z into z_i

- Find h such that for all z_i you care about

$$-\delta \leq z_i^T H z_i - |H_{\text{ideal}}(z_i)|^2 \leq \delta$$

$$H = hh^T$$

- The rank-1 constraint is non-convex!
Filter design as a Semi-definite Program

• Discretize \(z \) into \(z_i \)

• Find \(H \) such that for all \(z_i \) you care about

\[
-\delta \leq z_i^T H z_i - |H_{\text{ideal}}(z_i)|^2 \leq \delta
\]

\[
H \succeq 0
\]

• Relax to a convex semi-definite constraint (lifting)!

• Hot topic in convex optimization
Filter design as a Semi-definite Program

- H is in general not unique

\[
\begin{align*}
\text{maximize} & \quad H[0][0] \\
\text{subject to} & \quad -\delta \leq z_i^T H z_i - |H_{\text{ideal}}(z_i)|^2 \leq \delta
\end{align*}
\]

- Outputs the minimum phase h
Example
Zero-phase filter using linear program
Minimum phase filter using SDP
Minimum phase filter using SDP
Github package

• Filter design package using SDP:

 • https://github.com/frankong/filter_design

• Uses CVX