EE123
Digital Signal Processing

Lecture 13C
Lab 4 Part II - AFSK
Compressive Sampling
AFSK1200 / Bell 202 modem

- **Audio FSK**
 - Encodes digital data at 1200b/s
 - Use audio frequencies 1200/2200Hz
 - Within the bandwidth of the audio input BP filter of your radios
 - Still(!) popular for ham packet networks

\[
s(t) = \cos \left(2\pi f_c t + 2\pi \Delta f \int_{-\infty}^{t} m(\tau) d\tau \right)
\]

- \(f_c = 1700\), \(\Delta f = 500\), \(m(t) = \pm 1\)
- Phase is not the same for each bit -- must use non coherent detection.
• For spectrum to be narrow, need continuous phase
• NRZ signal, \(m(t) = 1 \), or -1 for a duration of a bit, then

\[
 s(t) = \cos \left(2\pi f_c t + 2\pi \Delta f \int_{\infty}^{t} m(\tau) d\tau \right)
\]

\[
 2\pi f_c + 2\pi \Delta f m(t)
\]
Write a modulator

• sig = afsk1200(bits,fs)

• If fs does not divide with 1200, then each bit has a fractional sample
 – Can cause drift

• Solution: Generate signal at higher rate that divides with 1200, and downsample
Modulator

• We will give you a sequence to compare to our implementation
Spectrum of AFSK1200

- Generate random 4096 bits, and compute average power spectrum
AFSK Demodulation

• While afsk is also digital FM -- we will use a non-coherent demodulator
• Based on article by Sivan Toledo (4x6IZ) and DireWolf aprs package.
Matched filter detection

- Design narrow low pass filters around 1200Hz and 2200Hz, compute envelope
Recover NRZ
Compute Bit Error Rate

- BER = \#altered bits / Total bits
- Simulate noisy data with gaussian noise
- Run for 10000 long bitstream

('BER of non-coherent:', 0.0012)
Compute empirical BER curves

• Simulate, and compare to Miki’s
• Should be similar performance!
Timing Recovery

- Where to sample????????
- Implement a simple phase-locked loop (PLL)
PLL

\[c[n] = c[n - 1](1 - (\text{sign}(m[n]))! = \text{sign}(m[n - 1])) \times 0.25 + \Delta c \]

- minimizes \(|C[n] - m[n]|\)
 - for zero-crossings of \(m[n]\)
- \(C[n]\) “nudges” is zero-crossing not aligned
- First order non-linear difference eqn.

\[c[n] = 0.75c[n - 1] + \Delta c \quad H(z) = \frac{\Delta c}{1 - 0.75z^{-1}} \]
PLL Lock

\[a = 0.75 \]

\[a = 0.9 \]
PLL Jitter

- Estimate timing on noisy data
Compressive Sampling

Q: What is the rate you need to sample at?
A: At least Nyquist!
Q: What is the rate you need to sample at?
A: Maybe less than Nyquist....
Image Compression

Images are compressible
Standard approach: First collect, then compress

M. Lustig, EECS UC Berkeley
Medical images are compressible
Standard approach: First collect, then compress
Medical images are compressible
Standard approach: First collect, then compress
Medical images are compressible
Standard approach: First collect, then compress

Courtesy, M. Uecker, J Frahm Max Planck
Example I: Audio

Raw audio: 44.1Khz, 16bit, stereo = 1378 Kbit/sec

MP3: 44.1Khz, 16bit, stereo = 128 Kbit/sec

10.76 fold!
Example II: Images

Raw image (RGB): 24 bit/pixel

JPEG: 1280x960, normal = 1.09 bit/pixel

22 fold!
Example III: Videos

Raw Video: \((480 \times 360)p \times 24b/p \times 24fps + 44.1\text{Khz} \times 16b \times 2 = 98,578 \text{ Kb/s}\)

MPEG4 : 1300 Kb/s

75 fold!
Almost all compression algorithms use transform coding:

- mp3: DCT
- JPEG: DCT
- JPEG2000: Wavelet
- MPEG: DCT & time-difference
Sparse Transform

Signal
Sparse Transform
Quantization
Entropy encoding

DCT
Sparse Transform

Signal

Sparse Transform

Entropy encoding

Quantization

DCT

sorted coefficients
Sparse Transform

What sparsifying transform would you use here?

Signal → Sparse Transform → Entropy encoding → Signal

Difference
Sparsity & Compressibility
Sparsity and Noise

sparse

not sparse

*image courtesy of J. Trzasko
Sparsity and Noise

sparse

denoise/separate by threshold

not sparse

image courtesy of J. Trzasko
AHA

SURE!

ON THE COUNT OF THREE

THIS SPECTRUM IS NOISY

CAN YOU GIVE ME A HAND?

THRESHOLD

YEP, JUST A THRESHOLD

LET'S GET OUT OF HERE BEFORE SOMEONE SEES US

SPARSITY MAKES IT EASY TO SEPARATE SIGNAL FROM NOISE

THAT WAS EASY

IT'S LIGHT TOO
Transform Sparsity

not sparse

Sparse Edges
Transform Sparsity and Denoising

not sparse

sparse

wavelet transform

low-frequency

denoised

high frequency

M. Lustig, EECS UC Berkeley
Transform Sparsity and Denoising

not sparse

sparse

wavelet transform

low-frequency

high frequency

denoised

Transform Sparsity and Denoising

wavelet denoising

More Sparse Transforms

*Video courtesy of Juan Santos, Heart Vista
Sparsity and Compression

- Only need to store non-zeros