Fundamental limit theorem

Markov Inequality:

Suppose R.V. X takes on a non-negative value.
Then: $P(X > a) \leq \frac{E(X)}{a}$

Proof:
Define $Y_a = \begin{cases} a & X \leq a \\ X & X > a \end{cases}$

Diagram:

\[0 \quad \frac{a}{a} \quad X \]

\[0 \quad Y_a \quad a \]
\[y_a \leq x \implies E[y_a] \leq E(x) \]

Compute:
\[E(y_a) = a \cdot P[y_a = a] + 0 \cdot P[y_a = 0] \]
\[= a \cdot P[y_a = a] = a \cdot P(x \geq a) \]
\[\implies P(x \geq a) \leq \frac{E(x)}{a} \]

\text{Markov}

\text{Ex. R.V. X, uniform \([0, 4]\) \& \(E(X) = 2\)}

\text{Markov Inequality:} \quad a = 2
\[P(X \geq 2) \leq \frac{2}{2} = 1 \quad \implies \text{useless} \]
\[
\begin{align*}
&\alpha = 3 \
&\Rightarrow \
&\begin{cases}
\alpha = 4 \\
\alpha = 0
\end{cases}
\end{align*}
\]

\[p(x \geq 3) = \frac{3}{2} \leq \frac{3}{2} \]

\[p(x \geq 4) \leq \frac{3}{2}\]

\[p(x \geq 2) = \frac{1}{2} \]

\[p(x > 3) = \frac{1}{4}\]

\[p(x > 4) = 0\]

Proof.

Chernoff Inequality
X is R.V. mean μ, variance σ^2

$$P(\lvert X - \mu \rvert > C) \leq \frac{\sigma^2}{C^2} \quad \forall C > 0$$

Proof: Consider $(X - \mu)^2$ as a positive R.V.

Apply Markov inequality with $a = C^2$

$$P((X - \mu)^2 > C^2) \leq \frac{E[(X - \mu)^2]}{C^2} = \frac{\sigma^2}{C^2}$$

Note: event $(X - \mu)^2 > C^2$ is identical to $\lvert X - \mu \rvert > C$
\[P \left(|X - \mu| \geq C \right) \leq \frac{\sigma^2}{C^2} \quad \forall C > 0 \]

Chebyshev Inequality.

Let \(C = k \sigma \) \(k \) positive

\[P \left(|X - \mu| \geq k \sigma \right) \leq \frac{\sigma^2}{k^2 \sigma^2} = \frac{1}{k^2} \]

Words: prob that a R.V. taken is more than \(k \) standard deviation away from mean is at most \(\frac{1}{k^2} \)
Ex R.V. uniform $[0, 4]$ \[E(x) = 2, \quad \sigma^2 = \frac{4}{3} \]

\[P(|x - 2| \geq 1) \leq \frac{4}{3} \quad \rightarrow \text{useless.} \]

Ex \hspace{1cm} \text{X in exponential at} \hspace{1cm} \text{KU.} \hspace{1cm} \lambda = 1

$E(X) = Var(X) = 1$. \hspace{1cm} \text{c} \gg 1

\[P(X > C) = P(X - 1 > C - 1) \leq \frac{6^2}{(C-1)^2 (C-3)^3} \]

\[P(X > C) \leq \frac{1}{Cc(C-1)^2} \quad \leftarrow \text{Chebyshev.} \]

\[P(X > c) = e^{-c} \quad \leftarrow \text{loose bound} \]

\[\text{using exponential} \]

\[\text{P}(X > c) = e^{-c} \]
Weak Law of Large Numbers

Consider X_1, X_2, \ldots i.i.d. RVs, mean μ, var σ^2

Define $M_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$

Sample mean

$E[M_n] = \frac{E[X_1] + E[X_2] + \ldots + E[X_n]}{n} = \frac{n\mu}{n} = \mu$

$\text{Var}[M_n] = \frac{n\sigma^2}{n} = \frac{\sigma^2}{n}$

Apply Chebyshev's To M_n:

\[P(\left| M_n - \mu \right| \geq \varepsilon) \leq \frac{\delta^2}{n\varepsilon^2} \quad \forall \varepsilon > 0 \]

\text{lim as } n \to \infty \text{ of both sides.}

\[P(\left| M_n - \mu \right| \geq \varepsilon) \to 0 \quad \text{as } n \to \infty \]

\text{Weak law of large numbers.}

EX Event A defined in terms of probabilistic experiment.

\[P(A) = \begin{cases} \rho & \text{if } \text{independent repetition of the experiment, } \text{ith repetition of the experiment } X_i \text{ event } A \text{ occurs} \\ 0 & \text{otherwise} \end{cases} \]
\[M_n = \frac{X_1 + X_2 + \ldots + X_n}{n} \quad \text{measured quantity} \]

\[E[X_i] = 1 \cdot P(A) + 0 \cdot P(\bar{A}) = P(A) = p. \]

Apply Weak law of large numbers:

\[P\left(\left|M_n - p\right| \geq \epsilon\right) \to 0 \quad \text{as} \quad n \to \infty \quad \forall \epsilon > 0 \]

Empirical frequency is a good way to estimate \(p \).
Ex polling: p = probability of supporting Kerry.
interview n randomly selected person

Record Mn.

Reply of the n persons is an independent Bernoulli R.V. \(X_i \) with success prob.

of \(P \): ????

Apply Chebyshev:

\[
P(\left| M_n - P \right| \geq \varepsilon) \leq \frac{P(1-P)}{\varepsilon^2} \]

note: \(P(1-P) \leq \frac{1}{4} \)
\[P \left(\left| M_n - \mu \right| > \varepsilon \right) \leq \frac{1}{4n\varepsilon^2} \]

\[\varepsilon = 0.1, \quad n = 100 \]

\[P \left(\left| M_{100} - \mu \right| > 0.1 \right) \leq \frac{1}{4} \]

It is shown that our \(M_{100} \) estimate of \(\mu \) is off by more than 10\% is less than \(\frac{1}{4} \).
3. our estimate needs to be within 1% of \(\mu \) with prob of at least 95%.

\[
P\left(|M_n - \mu| > 0.01 \right) \leq 5%
\]

\[
P\left(|M_n - \mu| > 0.01 \right) \leq \frac{1}{4n(0.01)^2} \leq 5%
\]

\[
\iff n \geq 50,000
\]