Problem Set 8
Fall 2018

Problem 1. Shannon Code

Consider the following method for generating a code for a random variable X that takes on m values $\{1, 2, \ldots, m\}$ with probabilities p_1, \ldots, p_m. Assume that the probabilities are ordered so that $p_1 \geq p_2 \geq \cdots \geq p_m > 0$. Define

$$F_i = \sum_{k=1}^{i-1} p_k,$$

to be the sum of the probabilities of all symbols less than i, and $F_1 = 0$. Then, in order to construct the codeword for i, which we denoted by $f(i)$, we consider the binary expansion of $F_i \in [0, 1)$, and round it off to l_i bits, where $l_i = \lceil \log_2 \frac{1}{p_i} \rceil$. Here, we do not allow the binary expansions to end with infinitely many ones, e.g. we write $1/2$ in binary as 0.1 not $0.0111\ldots$

1. Construct the code for the probability distribution $(0.5, 0.25, 0.125, 0.125)$.

2. Show that this code is prefix-free, that is, if $i \neq j$ are two different symbols, then their corresponding codewords are not prefix of each other, i.e. $f(i)$ is not a prefix of $f(j)$.

 Hint: show that if $u, v \in [0, 1)$ are such that $|u - v| \geq 2^{-l_i}$, then the first l_i bits of the binary representation of u and v can not be the same.

3. If L denotes the average codeword length, show that

$$H(X) \leq L < H(X) + 1.$$

4. Assume that X_1, X_2, \ldots are i.i.d. copies of X. Note that for each $n \geq 1$, we can treat the block X_1, \ldots, X_n as one random variable taking value in the set $\{1, \ldots, m\}^n$ and use the above scheme to encode it. Let L_n denote the average codeword length for this coding scheme and show that

$$\lim_{n \to \infty} \frac{1}{n} L_n = H(X).$$
Problem 2. Mutual Information
The mutual information of X and Y is defined as

$$I(X; Y) := H(X) - H(X | Y).$$

Here, $H(X | Y)$ denotes the conditional entropy of X given Y, which is defined as:

$$H(X | Y) = -\sum_{y \in Y} p_Y(y) \sum_{x \in X} p_{X|Y}(x | y) \log_2 p_{X|Y}(x | y).$$

The interpretation of conditional entropy is the average amount of uncertainty remaining in the random variable X after observing Y. The interpretation of mutual information is therefore the amount of information about X gained by observing Y.

1. Show that $H(X, Y) = H(Y) + H(X | Y) = H(X) + H(Y | X)$. This is often called the Chain Rule. Interpret this rule.

2. Show that $I(X; Y) = H(X) + H(Y) - H(X, Y)$. Note that this shows that $I(X; Y) = I(Y; X)$, i.e., mutual information is symmetric.

3. Consider the noisy typewriter in Figure 1. Let X be the input to the noisy typewriter, and let Y be the output (X is a random variable that takes values in the English alphabet). What is the distribution of X that maximizes $I(X; Y)$?

It turns out that $I(X; Y) \geq 0$ with equality if and only if X and Y are independent. The mutual information is an important quantity for channel coding.

Problem 3. Random Multiplication
Let X be uniformly distributed in the set $\{0, 1, 2, \ldots, 6\}$ and Z be uniformly distributed in the set $\{1, 2, \ldots, 6\}$. Also, define $Y = XZ \mod 7$. Find $H(X|Y)$.

Problem 4. Isolated Vertices
Consider a Erdős-Renyi random graph $\mathcal{G}(n, p(n))$, where n is the number of vertices and $p(n)$ is the probability that a specific edge appears in the graph. Let X_n be the...
number of isolated vertices in $G(n, p(n))$. Show that

$$
\mathbb{E}[X_n] \xrightarrow{n \to \infty} \begin{cases}
\infty, & p(n) \ll \frac{\ln n}{n}, \\
\exp(-c), & p(n) = \frac{\ln n + c}{n}, \\
0, & p(n) \gg \frac{\ln n}{n},
\end{cases}
$$

where the notation $p(n) \ll f(n)$ means that $p(n)/f(n) \to 0$ as $n \to \infty$, and $p(n) \gg f(n)$ means $p(n)/f(n) \to \infty$ as $n \to \infty$. Show also that in the third case, $p(n) \gg (\ln n)/n$, we have $X_n \to 0$ in probability as well.

Problem 5. Random Bipartite Graph

Consider a random bipartite graph with, K left nodes and M right nodes. Each of the $K \cdot M$ possible edges of this graph is present with probability p independently.

1. Find the distribution of the degree of a particular right node.

2. We call a right node with degree one a *singleton*. What is the average number of singletons in a random bipartite graph?

3. Find the average number of left nodes that are connected to at least one singleton.

Problem 6. [Bonus] Connected Random Graph

We start with the empty graph on n vertices, and iteratively we keep on adding undirected edges $\{u, v\}$ uniformly at random from the edges that are not so far present in the graph, until the graph is connected. Let X be a random variable which is equal to the total number of edges of the graph. Show that $\mathbb{E}[X] = O(n \log n)$.

Hint: consider the random variable X_k which is equal to the number of edges added while there are k connected components, until there are $k-1$ connected components. Don’t try to calculate $\mathbb{E}[X_k]$, an upper bound is enough.