1. Gaussians and the MSE

Suppose you draw n i.i.d. data points $(x_1, y_1), \ldots, (x_n, y_n)$, where n is a positive integer and the true relationship is $Y = WX + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. (That is, Y has a linear dependence on X, with additive Gaussian noise.) Show that finding the MLE estimate of W given the data points $\{(x_i, y_i) : i = 1, \ldots, n\}$ is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2$$

Solution:

The likelihood for the data is

$$L((x_1, y_1), \ldots, (x_n, y_n) \mid W = w) = \prod_{i=1}^{n} L((x_i, y_i) \mid W = w)$$

(the data points are conditionally independent given W)

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(y_i - wx_i)^2}{2\sigma^2}}$$

(again, we throw out constant factors that do not depend on the data points or w).

We wish to maximize this expression w.r.t. w, but we will find it more convenient to take the log-likelihood instead.

$$\ell((x_1, y_1), \ldots, (x_n, y_n) \mid w) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - wx_i)^2$$

Since we want to maximize the log-likelihood, this is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2$$
2. Hypothesis Testing for Bernoulli Random Variables

Assume that

- If $X = 0$, then $Y \sim \text{Bernoulli}(1/4)$.
- If $X = 1$, then $Y \sim \text{Bernoulli}(3/4)$.

Using the Neyman-Pearson formulation of hypothesis testing, find the optimal randomized decision rule $r : \{0, 1\} \rightarrow \{0, 1\}$ with respect to the criterion

$$
\min_{\text{randomized } r : \{0, 1\} \rightarrow \{0, 1\}} \mathbb{P}(r(Y) = 0 \mid X = 1)
$$

$$
s.t. \mathbb{P}(r(Y) = 1 \mid X = 0) \leq \beta,
$$

where $\beta \in [0, 1]$ is a given upper bound on the false positive probability.

Solution:

Here, the likelihood ratio is

$$
\frac{f_{Y \mid X}(y \mid 1)}{f_{Y \mid X}(y \mid 0)} = \begin{cases}
3, & \text{if } y = 1 \\
\frac{1}{3}, & \text{if } y = 0
\end{cases}
$$

If $\beta \leq P(Y = 1 \mid X = 0)$, then the optimal decision rule is to have $r(0) = 0$ and have $r(1) = 1$ with probability $\gamma = \frac{\beta}{1/4}$. Otherwise, the optimal decision rule is $r(1) = 1$ and have $r(0) = 1$ with probability γ, chosen to make $\mathbb{P}(r(Y) = 1 \mid X = 0) = \beta$. Then,

$$
\frac{1}{4} + \frac{3}{4} \gamma = \beta
$$

so $\gamma = \frac{4}{3} \beta - \frac{1}{3}$.

3. Bayesian Hypothesis Testing for Gaussian Distribution

Assume that X has prior probabilities $\mathbb{P}(X = 0) = \mathbb{P}(X = 1) = 1/2$. Further

- If $X = 0$, then $Y \sim \mathcal{N}(\mu_0, \sigma_0^2)$.
- If $X = 1$, then $Y \sim \mathcal{N}(\mu_1, \sigma_1^2)$.

Assume $\mu_0 < \mu_1$ and $\sigma_0 < \sigma_1$.

Using the Bayesian formulation of hypothesis testing, find the optimal decision rule $r : \mathbb{R} \rightarrow \{0, 1\}$ with respect to the minimum expected cost criterion

$$
\min_{r : \mathbb{R} \rightarrow \{0, 1\}} \mathbb{E}[I\{r(Y) \neq X\}],
$$

Solution:

We can write

$$
E[I(r(Y) \neq X)] = P(r(Y) \neq X)
$$

$$
= P(r(Y) = 1 \mid X = 0) \cdot \frac{1}{2} + P(r(Y) = 0 \mid X = 1) \cdot \frac{1}{2}
$$
We can write $P(r(Y) = 1 \mid X = 0)$ as

$$P(r(Y) = 1 \mid X = 0) = \int \begin{cases} f(y \mid X = 0) & \text{if } r(y) = 1 \\ 0 & \text{otherwise} \end{cases} \, dy$$

and do something similar for $P(r(Y) = 0 \mid X = 1)$. Combining everything together, we get

$$E[I(r(Y) \neq X)] = \frac{1}{2} \int \begin{cases} f(y \mid X = 0) & \text{if } r(y) = 1 \\ f(y \mid X = 1) & \text{if } r(y) = 0 \end{cases} \, dy$$

Since we’re free to choose $r(y)$ as 0 or 1, trying to minimize this leads to

$$\begin{cases} 0, & \text{if } f(y \mid X = 0) > f(y \mid X = 1) \\ 1, & \text{if } f(y \mid X = 0) < f(y \mid X = 1). \end{cases}$$

The condition $f(y \mid X = 0) < f(y \mid X = 1)$ can be written as

$$\left(\frac{1}{\sigma_0^2} - \frac{1}{\sigma_1^2} \right) y^2 - 2 \left(\frac{\mu_0}{\sigma_0^2} - \frac{\mu_1}{\sigma_1^2} \right) y + \left(\frac{\mu_0^2}{\sigma_0^2} - \frac{\mu_1^2}{\sigma_1^2} - 2 \ln \frac{\sigma_1^2}{\sigma_0^2} \right) > 0,$$

and if we let $a < b$ be the two roots of this quadratic, then the optimal decision rule can be written as

$$r(y) = \begin{cases} 0, & \text{if } y \in (a, b) \\ 1, & \text{if } y \in (-\infty, a) \cup (b, \infty). \end{cases}$$