EECS 126: Probability and Random Processes

Problem Set 8

Due on Thursday, March 17th 2005 in class

Problem 6. Let $X_1, X_2,...$ be independent, identically distributed random variables with $\mathbf{E}[X] = 2$ and $\mathrm{var}(X) = 9$, and let $Y_i = X_i/2^i$. We also define T_n and A_n to be the sum and the sample mean, respectively, of the random variables $Y_1,...,Y_n$.

- (a) Evaluate the mean and variance of Y_n, T_n, and A_n.
- (b) Does Y_n converge in probability? If so, to what value?
- (c) Does T_n converge in probability? If so, to what value?
- (d) Does A_n converge in probability? If so, to what value?

Problem 7. Suppose that a sequence X_n of random variables satisfies

$$\lim_{n \to \infty} \mathbf{E} [|X_n - c|^{\alpha}] = 0,$$

where α is a positive number. Show that the sequence X_n converges to c in probability.

Problem 12. On any given flight, an airline's goal is to fill the plane as much as possible, without overbooking. If, on average, 10% of customers cancel their tickets, all independently of each other, what is the probability that a particular flight will be overbooked if the airline sells 320 tickets, for a plane that has maximum capacity 300 people? What is the probability that a plane with maximum capacity 150 people will be overbooked if the airline sells 160 tickets?

Problem 15. Let S_n be the number of successes in n independent Bernoulli trials, where the probability of success in each trial is p = 1/2. Provide a numerical value for the limit as n tends to infinity for each of the following three expressions.

- (a) $P(\frac{n}{2} 10 \le S_n \le \frac{n}{2} + 10)$.
- (b) $P(\frac{n}{2} \frac{n}{10} \le S_n \le \frac{n}{2} + \frac{n}{10}).$
- (c) $P\left(\frac{n}{2} \frac{\sqrt{n}}{2} \le S_n \le \frac{n}{2} + \frac{\sqrt{n}}{2}\right)$.

Problem 17. Let $X_1, X_2, ...$ be a sequence of independent identically distributed random variables with finite mean and variance. Show that the sequence $Y_n = X_n/n$ converges to zero, with probability 1.

Problem 18. Let $X_1, X_2, ...$ be independent identically distributed random variables with mean 5, variance 9, and such that $\mathbf{P}(X_n = 0) > 0$. For each of the following ways of defining Z_n , determine whether the sequence Z_n converges with probability 1, and if it does, identify the limit.

- (a) $Z_n = (X_1 + \dots + X_n)/n$.
- (b) $Z_n = (X_1 + \dots + X_n 5n) / \sqrt{n}$.

(c)
$$Z_n = (X_1^2 + \dots + X_n^2)/n$$
.

(d)
$$Z_n = X_1 X_2 \cdots X_n$$
.

(e)
$$Z_n = (X_1X_2 + X_2X_3 + \dots + X_{n-1}X_n)/n$$
.

Problem 19. The fortune X_n of a gambler evolves as $X_n = Z_n X_{n-1}$, where the Z_n are independent identically distributed random variables with PMF

$$p_{\mathbf{Z}}(z) = \begin{cases} 1/3, & \text{for } z = 3, \\ 2/3, & \text{for } z = 1/3. \end{cases}$$

Assume that $X_0 = 1$.

- (a) Show that the expected for tune $\mathbf{E}[X_n]$ converges to infinity as n increases.
- (b) Show that the actual fortune X_n converges to 0 with probability 1.