EECS 126: Probability and Random Processes

Problem Set 9
Due on Thursday, April 7th 2005 in class

Problem 32. Let X_{1}, \ldots, X_{n} be some random variables and let $c_{i j}=\operatorname{cov}\left(X_{i}, X_{j}\right)$. Show that for any numbers a_{1}, \ldots, a_{n}, we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} c_{i j} a_{j} \geq 0
$$

Problem 33. Consider n independent tosses of a die. Each toss has probability p_{i} of resulting in i. Let X_{i} be the number of tosses that result in i. Show that X_{1} and X_{2} are negatively correlated (i.e., a large number of ones suggests a smaller number of twos).

Problem 34. Let $X=Y-Z$ where Y and Z are nonnegative random variables such that $Y Z=0$.
(a) Show that $\operatorname{cov}(Y, Z) \leq 0$.
(b) Show that $\operatorname{var}(X) \geq \operatorname{var}(Y)+\operatorname{var}(Z)$.
(c) Use the result of part (b) to show that

$$
\operatorname{var}(X) \geq \operatorname{var}(\max \{0, X\})+\operatorname{var}(\max \{0,-X\})
$$

Problem 36. The continuous random variables X and Y have a joint PDF given by

$$
f_{X, Y}(x, y)= \begin{cases}c, & \text { if }(x, y) \text { belongs to the shaded region } \\ 0, & \text { otherwise } .\end{cases}
$$

(a) Find the least squares estimate of Y given that $X=x$, for all possible vaalues x.
(b) Let $g^{*}(x)$ be the estimate from part (a), as a function of x. Find $\mathbf{E}\left[g^{*}(X)\right]$ and $\operatorname{var}\left(g^{*}(X)\right)$.
(c) Find the mean square error $\mathbf{E}\left[\left(Y-g^{*}(X)\right)^{2}\right]$. Is it the same as $\mathbf{E}[\operatorname{var}(Y \mid X)]$?
(d) Find $\operatorname{var}(Y)$.

Problem 38. In a communication system, the value of a random variable X is transmitted, but what is received (denoted by Y) is the value of X corrupted by some additive noise W; that is, $Y=X+W$. We know the distribution of X and W, and let us assume that these two random variables are independent and have the same PDF. Calculate the least squares estimate of X given Y. What happens if X and W are dependent?

Problem 40. Provide a new derivation of the formula

$$
\operatorname{var}(X)=\operatorname{var}(\hat{X})+\operatorname{var}(\tilde{X})
$$

using the law of total variance. Here, as in the text, $\hat{X}=\mathbf{E}[X \mid Y]$, and $\tilde{X}=X-\hat{X}$.
Problem 41. Let U and V be independent standard normal random variables. Let

$$
X=U+V, \quad Y=U-2 V
$$

(a) Do X and Y have a bivariate normal distribution?
(b) Provide a formula for $\mathbf{E}[X \mid Y]$.
(c) Write down the joint PDF of X and Y.

