Problem 2.1 (30pts) True or False. Prove or show a counterexample:

a. 10pts. Let X and Y be two rv's. Then:

$$\text{var}\left(\frac{X+Y}{2}\right) \leq \max\{\text{var}(X), \text{var}(Y)\}$$

b. 10pts Let X_1, X_2, \ldots, X_n all be identically distributed as Gaussian $N(0, 1)$

Then $Y = \frac{\sum_{i=1}^{n} X_i}{\sqrt{n}}$ is also Gaussian $N(0, 1)$

c. 10pts For every continuous r.v. X that takes strictly positive values there exists some $s > 0$

for which the moment generating function $M_X(s)$ exists and is well defined.

Problem 2.2 (40pts) Linear Least Square Estimation.

a. 20pts. Let X, Y, Z_1, Z_2 be independent rv.'s with known means and variances.

Given

$$U = X - Y + Z_1$$
$$V = X + Y + Z_2$$

find $\text{LLSE}(X|U, V)$ and $\text{LLSE}(Y|U, V)$, as well as the resulting mean-squared errors

of the estimates.

b. 20pts. Let X be a Bernoulli(p) and N_0, N_1, N_2 be independent Gaussian rv’s $N(0, \sigma_0^2)$, $N(0, \sigma_1^2), N(0, \sigma_2^2)$ respectively.

Given two observations:

$$Y_1 = X + N_0 + N_1$$
$$Y_2 = X + N_0 + N_2$$

find $\text{LLSE}(X|Y_1, Y_2)$ as well as the resulting mean-squared error of the estimate.
(This last problem is far (about a factor of 3) longer than what will appear on the midterm. It is here to give you extra practice as well as possibly be a lot of fun. If you like this sort of thing, think about taking 174 and/or 229 to learn more.)

Problem 2.3 (55pts) Random error-correcting codes: This problem explores a particular kind of error-correcting code that is random in nature and is used over an “erasure” or packet-drop channel. This is an idealization of what happens over the Internet or a wireless network in which packets can be lost, but the receiver knows when this loss happens.

We assume that each packet X_i carries a single bit (either +1 or -1) and is received as $Y_i = X_i \ast Z_i$ where the Z_i are independent and identically distributed Bernoulli $(1 - \delta)$ taking on values $Z_i = 1$ (packet makes it through) or $Z_i = 0$ (packet is dropped). δ therefore represents the probability of dropping a packet.

a. 5pts Suppose that in advance, we randomly generate two independent “codewords” \tilde{X}_1^n and \tilde{X}_1^n each of length n with all $2n$ constituent symbols chosen independently using $P(+1) = P(-1) = \frac{1}{2}$.

Calculate the probability that the two generated codewords happen to be exactly the same in each of the n positions simultaneously? (ie. $P(\tilde{X}_1^n = \tilde{X}_1^n)$)

b. 5pts Now suppose that the codeword \tilde{X}_1^n is sent across the channel and the receiver has received Y_1^n. The received sequence Y_1^n is considered “compatible” with a codeword \tilde{X}_1^n if for every $1 \leq i \leq n$, either $Y_i = \tilde{X}_i$ or $Y_i = 0$ (that bit was dropped).

Show that the transmitted codeword \tilde{X}_1^n is always compatible with Y_1^n.

c. 5pts Calculate the probability that the received sequence Y_1^n will be compatible with a wrong codeword \tilde{X}_1^n, where the \tilde{X}_i are all independent of each other and the \tilde{X}_i. (ie. What is $P(\forall 1 \leq i \leq n, Y_i = \tilde{X}_i \ast Z_i)$?)

d. 5pts Next, we suppose that instead of having only one competing independent codeword \tilde{X}_1^n, there are actually $M - 1$ such competing independent codewords. We say that an “error” occurs if two or more codewords (including the true one \tilde{X}_1^n) are compatible with the received sequence Y_1^n. Show that the probability of error P_e is less than or equal to M times the probability that you calculated in part [c].

e. 10pts Build on parts [c] and [d] to give an explicit upper bound on P_e as a function of M, δ, n. Give a formula for how large M can be as a function of δ, n, ϵ while still guaranteeing that $P_e < \epsilon < 1$. [Use logs where it makes sense.]

f. 5pts The formulas calculated in part [e] are actually too conservative, so we will take a different approach. Let L be the random variable counting the number of zeros in the Z_1^n sequence. Suppose that we knew that there were exactly $L = l$ zeros in the Z_1^n sequence. Conditioned on this event, revise your calculation from part [e] bounding P_e.

g. 10pts Use Chernoff bounding techniques to get a bound on the probability of having $L \geq n(\delta + \beta)$ for $\beta > 0$.

2
h. 10pts Combine parts [f] and [g] to give new bounds on P_e as a function of M, δ, n.

Compare to what you had calculated in [e].

i. Extra Bonus Suppose that the message set consisted of nR bits (and hence 2^{nR} distinct possible messages) denoted B_k for $k = 1, 2, \ldots nR$ for $0 \leq R \leq 1$. How high can you make R while still getting a low P_e as n gets large using the bounds of [e]? Using the bounds of [h]? Do you think any higher rates could be achievable with other communication schemes?

j. Extra Bonus Generating 2^{nR} codewords would require $n2^{nR}$ fair coin tosses — too big to even store for all but small values of n. Show that the following scheme using only $n + n^2 R$ fair coin tosses still results in pairs of independent codewords for any pair of distinct bit strings B_1^{nR}.

$$X_i(B_1^{nR}) = G_{0,i} + \sum_{k=1}^{nR} G_{k,i} B_k \mod 2$$

where the $G_{j,i}$ are all independent fair coin tosses for all $j = 0, 1, \ldots, nR$ and $i = 1, 2, \ldots, n$.

Everything you did in parts [a-i] only used this sort of pairwise independence.

k. Super Bonus Given the $G_{j,i}$, what is the computational complexity of encoding a given message string into a codeword?

Given the packet-drop model here, what is the computational complexity of decoding? [Think about solving the right system of linear equations.]