1. Statistical Estimation

Given $X \in \{0, 1\}$, the random variable Y is exponentially distributed with rate $3X + 1$.

(a) Assume $P(X = 1) = p \in (0, 1)$ and $P(X = 0) = 1 - p$. Find the MAP estimate of X given Y.

(b) Find the MLE of X given Y.

Solution:

(a) We know that when $X = 0$, $f_{Y|X}(y \mid 0) = \exp(-y)1\{y > 0\}$ and when $X = 1$, $f_{Y|X}(y \mid 1) = 4\exp(-y)1\{y > 0\}$. The MAP maximizes $f_{X|Y}(x, y)$ over x for the given observation y, which is equivalent to maximizing $f_{X,Y}(x, y)$. Thus,

$f_{X,Y}(0, y) = (1 - p)\exp(-y)1\{y > 0\},$

and

$f_{X,Y}(1, y) = 4p\exp(-4y),$

and

$\text{MAP}[X \mid Y] = 1 \iff 4p\exp(-4Y) > (1 - p)\exp(-Y)$

which gives

$\text{MAP}[X \mid Y] = 1\left\{ Y < \frac{1}{3} \ln 4p \right\}.$

(b) The MLE is the MAP estimate with the prior probability p set to $1/2$.

$\text{MLE}[X \mid Y] = 1\left\{ Y < \frac{1}{3} \ln 4 \right\} = 1\{Y < 0.462\}.$

2. Poisson Process MAP

Customers arrive to a store according to a Poisson process of rate 1. The store manager learns of a rumor that one of the employees is sending $1/2$ of the customers to the rival store. Refer to hypothesis $X = 1$ as the rumor being true, that one of the employees is sending every other customer arrival to the rival store and hypothesis $X = 0$ as the rumor being false, where each hypothesis is equally likely. Assume that at time 0, there is a successful sale. After that, the manager observes S_1, S_2, \ldots, S_n where n is a positive integer.
and S_i is the time of the ith subsequent sale for $i = 1, \ldots, n$. Derive the MAP rule to determine whether the rumor was true or not.

Solution:

Note that both hypotheses are a priori equally likely, so the MAP rule is equivalent to the ML rule. The interarrival times are independent conditioned on $X = 1$ and $X = 0$. The density of an interarrival interval given $X = 1$ is Erlang of order 2, so for $0 \leq s_1 < \cdots < s_n$:

$$f_{S|X}(s_1, s_2, \ldots, s_n | 1) = \prod_{i=1}^{n} (s_i - s_{i-1}) e^{-(s_i - s_{i-1})} = e^{-s_n} \prod_{i=1}^{n} (s_i - s_{i-1})$$

The density of an interarrival interval given $X = 0$ is exponential, so:

$$f_{S|X}(s_1, s_2, \ldots, s_n | 0) = e^{-s_n}$$

We can thus see, by taking the log of both expressions, we declare $X = 1$ if $\sum_{i=1}^{n} \log(S_i - S_{i-1}) \geq 0$, otherwise we declare $X = 0$.

3. **Laplace Prior & ℓ^1-Regularization**

Suppose you draw n i.i.d. data points $(x_1, y_1), \ldots, (x_n, y_n)$, where n is a positive integer and the true relationship is $Y = WX + \varepsilon$, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. (That is, Y has a linear dependence on X, with additive Gaussian noise.) Further suppose that W has a prior distribution with density

$$f_W(w) = \frac{1}{2\beta} e^{-|w|/\beta}, \quad \beta > 0.$$

(This is known as the Laplace distribution.) Show that finding the MAP estimate of W given the data points $\{(x_i, y_i) : i = 1, \ldots, n\}$ is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda|w|$$

(you should determine what λ is). This is interpreted as a one-dimensional ℓ^1-regularized least-squares criterion, also known as LASSO.

Solution:

The likelihood for W is

$$\mathcal{L}(w \mid (x_1, y_1), \ldots, (x_n, y_n)) \propto \mathcal{L}(x_1, y_1), \ldots, (x_n, y_n \mid W = w) f_W(w)$$

(technically, the expression on the right should be divided by the likelihood of the data, but this has no dependence on w, so we omit the denominator for simplicity)

$$= \prod_{i=1}^{n} \mathcal{L}(x_i, y_i \mid W = w) f_W(w)$$
(the data points are conditionally independent given W)

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma}} e^{-(y_i - wx_i)^2/(2\sigma^2)} \cdot \frac{1}{2\beta} e^{-|w|/\beta}$$

(here we say that the likelihood of (x_i, y_i) given W is the density of ε_i, which is $\mathcal{N}(0, \sigma^2)$, evaluated at $y_i - wx_i$)

$$\propto \prod_{i=1}^{n} e^{-(y_i - wx_i)^2/(2\sigma^2)} e^{-|w|/\beta}$$

(again, we throw out constant factors that do not depend on the data points or w).

We wish to maximize this expression w.r.t. w, but we will find it more convenient to take the log-likelihood instead.

$$\ell(w \mid (x_1, y_1), \ldots, (x_n, y_n)) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - wx_i)^2 - \frac{1}{\beta} |w|.$$

Since we want to maximize the log-likelihood, this is equivalent to minimizing the cost function

$$J(w) = \sum_{i=1}^{n} (y_i - wx_i)^2 + \lambda |w|,$$

where $\lambda = 2\sigma^2 / \beta$.