A Geometric Derivation of the Scalar Kalman Filter

EECS 126 (UC Berkeley)
Spring 2019

1 Introduction

In this note, we develop an intuitive and geometric derivation of the scalar Kalman filter. Consider the following state space equations:

\[x_n = ax_{n-1} + v_n, \]
\[y_n = cx_n + w_n \]

for each positive integer \(n \), where \((v_n)_{n=1}^{\infty}\) and \((w_n)_{n=1}^{\infty}\) are independent sources of noise. A typical scenario to keep in mind is to have a particle with position \(x_n \) moving according to the updates in (1) while measurements of the particle’s position are observed as in (2). We will additionally restrict our attention to the case when \(|a| < 1 \). If this condition does not hold, it is possible to add a control term, however we will not discuss this here. Rather, our goal is to determine \(L[x_n \mid y_1, \ldots, y_n] \).

Without loss of generality, we assume \(c = 1 \). Indeed, if \(c = 0 \), then the observations are not correlated with the particle’s position, so this case is uninteresting. Otherwise, if \(c \neq 0 \), then we can rescale (2):

\[\frac{y_n}{c} = x_n + \frac{w_n}{c}. \]

Then, we can consider \((y_n/c)_{n=1}^{\infty}\) to be the new observations and \((w_n/c)_{n=1}^{\infty}\) to be the new observation noise variables.

2 Derivation of the Scalar Kalman Filter

We begin with the key observation from \([1, \text{Theorem 8.2}].\)
Lemma 1. Assume that X, Y, Z are zero-mean random variables. Then:

\[L[X \mid Y, Z] = L[X \mid Y] + L[X \mid Z - L[Z \mid Y]] \]

How does Lemma 1 help us? We are interested in:

\[\hat{x}_n = L[x_n \mid y_1, \ldots, y_n] \]

The first quantity in the sum is the best estimate of x_n given the observations y_1, \ldots, y_{n-1}, let us denote it \hat{x}_{n-1}. Additionally, we call

\[\tilde{y}_n = y_n - L[y_n \mid y_1, \ldots, y_{n-1}] \]

the innovation in y_n. Thus, we have:

\[\hat{x}_n = \hat{x}_{n-1} + k_n \tilde{y}_n \] (3)

which is our first Kalman filter equation. We note that $\hat{x}_{n-1} = a \hat{x}_{n-1}$, so that if we are estimating online we have access to this quantity. Additionally,

\[\tilde{y}_n = y_n - L[y_n \mid y_1, \ldots, y_{n-1}] = y_n - L[x_n + w_n \mid y_1, \ldots, y_{n-1}] \\
= y_n - L[x_n \mid y_1, \ldots, y_{n-1}] = y_n - \hat{x}_{n-1}. \]

Thus, we see that if we can determine the quantity k_n (referred to as the Kalman gain), we are done. To do this, we proceed geometrically as in Figure 1. How does one arrive at such a diagram? First, we place the origin 0 and x_n. This does not violate any constraints as we are simply orienting ourselves and placing an arbitrary vector. Now, we would like to draw the vector corresponding to \hat{x}_{n-1}. The only constraint given the vectors thus far is that $\hat{x}_{n-1} \perp (x_n - \hat{x}_{n-1})$ and placing \hat{x}_{n-1} as in Figure 1 satisfies this. Now, we place the vector corresponding to \tilde{y}_n. We thus need $\tilde{y}_n \perp \hat{x}_{n-1}$, so we draw it as in Figure 1. Vector addition thus fixes the position of y_n. Additionally, we project x_n onto \tilde{y}_n to get the vector $k_n \tilde{y}_n$. We are now ready to find k_n geometrically.

Note that the triangles with vertices $(\hat{x}_{n-1}, x_n, y_n)$ is similar to the triangle with vertices $(\hat{x}_{n-1}, \hat{x}_{n}, x_n)$, and thus

\[\frac{\|\hat{x}_n - \hat{x}_{n-1}\|}{\|x_n - \hat{x}_{n-1}\|} = \frac{\|x_n - \hat{x}_{n-1}\|}{\|y_n - \hat{x}_{n-1}\|}. \]
Figure 1: Geometry of the Kalman filter.

Now, since \(|\hat{x}_n| - \hat{x}_{n|n-1}|| = k_n||y_n - \hat{x}_{n|n-1}||, \) by rearranging one has

\[
k_n = \frac{||x_n - \hat{x}_{n|n-1}||^2}{||y_n - \hat{x}_{n|n-1}||^2} = \frac{\sigma_{n|n-1}^2}{\sigma_{n|n-1}^2 + \sigma_v^2}. \tag{4}
\]

The denominator of this last equality comes from the right triangle with vertices \((\hat{x}_{n|n-1}, x_n, y_n)\). We know \(\sigma_w^2\), so it remains to compute \(\sigma_{n|n-1}^2\). In order to find this, we need another picture.

Although we went through the construction of Figure 1 in detail, we will simply give Figure 2.

Noting that we are interested in \(\sigma_{n|n-1}^2\), we examine the triangle with vertices \((\hat{x}_{n|n-1}, ax_{n-1}, x_n)\). Note that by similar triangles,

\[
||ax_{n-1} - \hat{x}_{n|n-1}|| = a||\Delta_{n-1|n-1}||
\]

and that \(||\Delta_{n|n-1}||^2 = ||ax_{n-1} - \hat{x}_{n|n-1}||^2 + ||v_{n-1}||^2\), so

\[
\sigma_{n|n-1}^2 = a^2\sigma_{n-1|n-1}^2 + \sigma_v^2. \tag{5}
\]

This implies we need one final quantity: \(\sigma_{n|n}^2\). Once we have this, in each iteration, we can simply pass along \(\sigma_{n|n}^2\). To find this, we again examine

\[\text{Interestingly, it is sufficient to use one 4-D plot to draw all that we need, but this is hard (impossible?) to visualize, so we draw another 3-D plot.} \]
Figure 2: Geometry of the Kalman filter.

Figure 1. We note that $\sigma_{n|n}^2 = \|x_n - \hat{x}_{n|n}\|^2$ and $\sigma_{n|n-1}^2 = \|x_n - \hat{x}_{n|n-1}\|^2$. By the Pythagorean Theorem, we know that

$$\|x_n - \hat{x}_{n|n-1}\|^2 = \|\hat{x}_{n|n} - \hat{x}_{n|n-1}\|^2 + \|x_n - \hat{x}_{n|n}\|^2.$$

Thus,

$$\sigma_{n|n}^2 = \|x_n - \hat{x}_{n|n}\|^2 = \|x_n - \hat{x}_{n|n-1}\|^2 - \|\hat{x}_{n|n} - \hat{x}_{n|n-1}\|^2$$

$$= \|x_n - \hat{x}_{n|n-1}\|^2 \left(1 - \frac{\|\hat{x}_{n|n} - \hat{x}_{n|n-1}\|^2}{\|x_n - \hat{x}_{n|n-1}\|^2}\right)$$

$$= \|x_n - \hat{x}_{n|n-1}\|^2 \left(1 - \frac{\|x_n - \hat{x}_{n|n-1}\|^2}{\|y_n - \hat{x}_{n|n-1}\|^2}\right) = \sigma_{n|n-1}^2(1 - k_n).$$

We have successfully derived the scalar Kalman filter equations in the case $c = 1$. The formulas are listed here:

$$\hat{x}_{n|n} = \hat{x}_{n|n-1} + k_n \tilde{y}_n,$$
$$\tilde{y}_n = y_n - a \hat{x}_{n-1|n-1},$$
\[k_n = \frac{\sigma^2_{n|n-1}}{\sigma^2_{n|n-1} + \sigma^2_w}, \]
\[\sigma^2_{n|n-1} = a^2 \sigma^2_{n-1|n-1} + \sigma^2_v, \]
\[\sigma^2_{n|n} = \sigma^2_{n|n-1}(1 - k_n). \]

One key observation is that the gain \(k_n \) may be computed offline! Thus, in practice, one can precompute the gain, and quickly find the estimates \(\hat{x}_{n|n} \) as observations stream in.

3 Vector Case

Let us now examine the case when our state is a vector. The state space equations in this case are:

\[X_n = AX_{n-1} + V_{n-1}, \quad (6) \]
\[Y_n = CX_n + W_n, \quad (7) \]

where \((V_i)_{i=1}^{\infty}, (W_i)_{i=1}^{\infty}\) are orthogonal, zero-mean sources of error. The vector equations are as follows:

\[\hat{X}_{n|n} = \hat{X}_{n|n-1} + K_n \tilde{Y}_n, \quad (8) \]
\[\tilde{Y}_n = Y_n - C \hat{X}_{n|n-1}, \quad (9) \]
\[K_n = \Sigma_{n|n-1} C^T (C \Sigma_{n|n-1} C^T + \Sigma_W)^{-1}, \quad (10) \]
\[\Sigma_{n|n-1} = A \Sigma_{n-1|n-1} A^T + \Sigma_V, \quad (11) \]
\[\Sigma_{n|n} = (I - K_n C) \Sigma_{n|n-1}. \quad (12) \]

4 Conclusion

We have presented a simple derivation of the scalar Kalman filter in this note. We did not provide a proof or the update equations for the vector case in order to keep the note less cluttered. For these, please see [1, Section 8.2].

References