1 Introduction

In this note, we will briefly introduce the subject of random graphs, also known as Erdős-Rényi random graphs. Given a positive integer n and a probability value $p \in [0, 1]$, the $G(n, p)$ random graph is an undirected graph on n vertices such that each of the $\binom{n}{2}$ edges is present in the graph independently with probability p. When $p = 0$, $G(n, 0)$ is an empty graph on n vertices, and when $p = 1$, $G(n, 1)$ is the fully connected graph on n vertices (denoted K_n). Often, we think of $p = p(n)$ as depending on n, and we are usually interested in the behavior of the random graph model as $n \to \infty$.

A bit more formally, $G(n, p)$ defines a distribution over the set of undirected graphs on n vertices. If $G \sim G(n, p)$, meaning that G is a random graph with the $G(n, p)$ distribution, then for every fixed graph G_0 on n vertices with m edges, $\Pr(G = G_0) := p^m(1 - p)^{\binom{n}{2} - m}$. In particular, if $p = 1/2$, then the probability space is uniform, or in other words, every undirected graph on n vertices is equally likely.

Here are some warm-up questions.

Question 1. What is the expected number of edges in $G(n, p)$?

Answer 1. There are $\binom{n}{2}$ possible edges and the probability that any given edge appears in the random graph is p, so by linearity of expectation, the answer is $\binom{n}{2}p$.

Question 2. Pick an arbitrary vertex and let D be its degree. What is the distribution of D? What is the expected degree?

Answer 2. Each of the $n - 1$ edges connected to the vertex is present independently with probability p, so $D \sim \text{Binomial}(n - 1, p)$. For every $d \in \{0, 1, \ldots, n - 1\}$, $\Pr(D = d) = \binom{n - 1}{d}p^d(1 - p)^{n - 1 - d}$, and $\mathbb{E}[D] = (n - 1)p$.

Question 3. Suppose now that $p(n) = \lambda/n$ for a constant $\lambda > 0$. What is the approximate distribution of D when n is large?
Answer 3. By the Poisson approximation to the binomial distribution, D is approximately Poisson(λ). For every $d \in \mathbb{N}$, $\mathbb{P}(D = d) \approx \exp(-\lambda) \lambda^d / d!$.

Question 4. What is the probability that any given vertex is isolated?

Answer 4. All of the $n - 1$ edges connected to the vertex must be absent, so the desired probability is $(1 - p)^{n-1}$.

2 Sharp Threshold for Connectivity

We will sketch the following result (see [1]):

Theorem 1 (Erdős-Rényi, 1961). Let

$$p(n) := \frac{\ln n}{n}$$

for a constant $\lambda > 0$.

- If $\lambda < 1$, then $\mathbb{P}\{G(n, p(n)) \text{ is connected}\} \to 0$.
- If $\lambda > 1$, then $\mathbb{P}\{G(n, p(n)) \text{ is connected}\} \to 1$.

In the subject of random graphs, threshold phenomena like the one above are very common. In the above result, nudging the value of λ slightly around the critical value of 1 causes drastically different behavior in the limit, so it is called a *sharp* threshold. In such cases, examining the behavior near the critical value leads to further insights. Here, if we take $p(n) = (\ln n + c)/n$ for a constant $c \in \mathbb{R}$, then it is known that

$$\mathbb{P}\{G(n, p(n)) \text{ is connected}\} \to \exp\{-\exp(-c)\},$$

see [2, Theorem 7.3]. Notice that the probability increases smoothly from 0 to 1 as we vary c from $-\infty$ to ∞.

Why is the threshold $p(n) = (\ln n)/n$? When $p(n) = 1/n$, then the expected degree of a vertex is roughly 1 so many of the vertices will be joined together (a great deal is known about the evolution of the so-called giant component, see e.g. [2]), but it is too likely that one of the vertices will have no edges connected to it, making it isolated (and thus the graph is disconnected).
Proof of Theorem 1. First, let $\lambda < 1$. If X_n denotes the number of isolated nodes in $\mathcal{G}(n, p(n))$, then it suffices to show that $\mathbb{P}(X_n > 0) \to 1$, i.e., there is an isolated node with high probability (this will then imply that the random graph is disconnected).

- $\mathbb{E}[X_n]$:
 Define I_i to be the indicator random variable of the event that the ith vertex is isolated. Using linearity of expectation and symmetry, $\mathbb{E}[X_n] = \sum_{i=1}^n \mathbb{E}[I_i] = \sum_{i=1}^n \mathbb{P}($node i is isolated$) = nq(n)$, where we define $q(n) := \mathbb{P}(\text{a node is isolated}) = [1 - p(n)]^{n-1}$.

 Observe that
 \[
 \ln \mathbb{E}[X_n] = \ln n + (n - 1) \ln \{1 - p(n)\} \sim \ln n - \frac{n - 1}{n} \lambda \ln n \to \infty,
 \]
 since $\lambda < 1$. Here, if f and g are two functions on \mathbb{N}, then the notation $f(n) \sim g(n)$ means $f(n)/g(n) \to 1$ (asymptotically, f and g have the same behavior). The above line also uses the first-order Taylor expansion $\ln(1 - x) = -x + o(x)$ as $x \to 0$.

 Thus $\mathbb{E}[X_n] \to \infty$ which is reassuring, since we want to prove that $\mathbb{P}(X_n > 0) \to 1$, but in order to prove the probability result we will need to also look at the variance of X_n.

- $\text{var } X_n$:
 We claim that
 \[
 \mathbb{P}(X_n = 0) \leq \frac{\text{var } X_n}{\mathbb{E}[X_n]^2}.
 \]
 Here are two ways to see this. First, from the definition of variance,
 \[
 \text{var } X_n = \mathbb{E}[(X_n - \mathbb{E}[X_n])^2]
 = \mathbb{E}[X_n]^2 \mathbb{P}(X_n = 0) + (1 - \mathbb{E}[X_n])^2 \mathbb{P}(X_n = 1) + \cdots
 \geq \mathbb{E}[X_n]^2 \mathbb{P}(X_n = 0).
 \]

 The second way is to use Chebyshev’s Inequality:
 \[
 \mathbb{P}(X_n = 0) \leq \mathbb{P}(|X_n - \mathbb{E}[X_n]| \geq \mathbb{E}[X_n]) \leq \frac{\text{var } X_n}{\mathbb{E}[X_n]^2}.
 \]

 The use of the variance is often called the **Second Moment Method**. We must show that the ratio $(\text{var } X_n)/\mathbb{E}[X_n]^2 \to 0$. Since I_1, \ldots, I_n are
not independent, we must use \(\text{var} X_n = n \text{var} I_1 + n(n-1) \text{cov}(I_1, I_2) \). Since \(I_1 \) is a Bernoulli random variable, \(\text{var} I_1 = q(n)[1 - q(n)] \), and by definition \(\text{cov}(I_1, I_2) = \mathbb{E}[I_1 I_2] - \mathbb{E}[I_1] \mathbb{E}[I_2] = \mathbb{E}[I_1 I_2] - q(n)^2 \).

In order to find \(\mathbb{E}[I_1 I_2] \), we interpret it as a probability:

\[
\mathbb{E}[I_1 I_2] = P(\text{nodes 1, 2 are isolated}).
\]

In order for this event to happen, \(2n - 3 \) edges must be absent:

\[
P(\text{nodes 1, 2 are isolated}) = [1 - p(n)]^{2n-3} = \frac{q(n)^2}{1 - p(n)}.
\]

So, \(\text{cov}(I_1, I_2) = q(n)^2/[1 - p(n)] - q(n)^2 = p(n)q(n)^2/[1 - p(n)] \), and

\[
\text{var} X_n = \frac{nq(n)[1 - q(n)] + n(n-1)p(n)q(n)^2/[1 - p(n)]}{n^2q(n)^2} = \frac{1 - q(n)}{nq(n)} + \frac{n-1}{n^2} \frac{p(n)}{1 - p(n)}.
\]

Since \(nq(n) = \mathbb{E}[X_n] \to \infty \), the first term tends to 0, and since \(p(n) \to 0 \), the second term tends to 0 as well.

Next, let \(\lambda > 1 \). The key idea for the second claim is the following: the graph is disconnected if and only if there exists a set of \(k \) nodes, \(k \in \{1, \ldots, \lfloor n/2 \rfloor \} \), such that there is no edge connecting the \(k \) nodes to the other \(n - k \) nodes in the graph. We can apply the union bound twice.

\[
P\{ G(n, p(n)) \text{ is disconnected} \}
\]

\[
= P\left(\bigcup_{k=1}^{\lfloor n/2 \rfloor} \{ \text{some set of } k \text{ nodes is disconnected} \} \right)
\]

\[
\leq \sum_{k=1}^{\lfloor n/2 \rfloor} P(\text{some set of } k \text{ nodes is disconnected})
\]

\[
\leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} P(\text{a specific set of } k \text{ nodes is disconnected})
\]

\[
= \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} [1 - p(n)]^{k(n-k)}.
\]

The rest of the proof is showing that the above summation tends to 0 via tedious calculations, which will be given in the Appendix.
Appendix: Tedious Calculations

Here, we will argue that

\[
\sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} [1 - p(n)]^{k(n-k)} \leq \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} \exp\{-k(n - k)p(n)\} = \sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{-\lambda k(n-k)/n}
\]

tends to 0 as \(n \to \infty \). One way to do this is to break up the summation into two parts. Since \(\lambda > 1 \), choose \(n^* \) so that \(\lambda \frac{n-n^*}{n} > 1 \), which means we can take \(n^* = \lfloor n(1 - \lambda^{-1}) \rfloor \). The first part of the summation is

\[
\sum_{k=1}^{n^*} \binom{n}{k} n^{-\lambda k(n-k)/n} \leq \sum_{k=1}^{n^*} n^{-k[\lambda(n-k)/n-1]} \leq \sum_{k=1}^{n^*} n^{-k[\lambda(n-n^*)/n-1]}
\]

\[
\leq \frac{n^{-[\lambda(n-n^*)/n-1]}}{1 - n^{-[\lambda(n-n^*)/n-1]}} \to 0.
\]

For the second part of the summation, we will use the bound

\[
\binom{n}{k} \leq \frac{n^k}{k!} = \left(\frac{n}{k} \right)^k \frac{k^k}{k!} \leq \left(\frac{n}{k} \right)^k \sum_{j=0}^{\infty} \frac{k^j}{j!} = \left(\frac{en}{k} \right)^k.
\]

Using this bound:

\[
\sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \binom{n}{k} n^{-\lambda k(n-k)/n} \leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \frac{(en^{1-\lambda(n-k)/n})^k}{k!} \leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \frac{(en^{1-\lambda(n-k)/n})^k}{n^* + 1}
\]

\[
\leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \frac{en^{-\lambda(n-k)/n}1^{k}}{1 - \lambda^{-1}} \leq \sum_{k=n^*+1}^{\lfloor n/2 \rfloor} \frac{en^{-\lambda/2}1^{k}}{1 - \lambda^{-1}}
\]

For \(n \) sufficiently large, \(en^{-\lambda/2}/(1 - \lambda^{-1}) < \delta \) for some \(\delta < 1 \).

\[
\leq \sum_{k=n^*}^{\infty} \delta^k = \frac{\delta n^*}{1 - \delta} \to 0
\]

since \(n^* \to \infty \).
References
