Problem 1.
1. Show that the probability that exactly one of the events A and B occurs is $P(A) + P(B) - 2P(A \cap B)$.

2. If A is independent of itself, show that $P(A) = 0$ or 1.

Solution 1.
1. The probability of the event that exactly one of A and B occur is
\[\Pr(A \cap B^c) + \Pr(A^c \cap B) = \Pr(A) - \Pr(A \cap B) + \Pr(B) - \Pr(A \cap B) = \Pr(A) + \Pr(B) - 2\Pr(A \cap B). \]

2. $\Pr(A \cap A) = \Pr(A) \Pr(A)$, so $\Pr(A) = \Pr(A)^2$; this implies that $\Pr(A) \in \{0, 1\}$.

Alternatively, suppose for the sake of contradiction that $0 < \Pr(A) < 1$. Then, $\Pr(A \mid A) = 1 \neq \Pr(A)$, which contradicts the supposed independence of A with itself. Hence, $\Pr(A) \in \{0, 1\}$.

Problem 2. You know that, at least one of the events A_r (for $r \in \{1, \ldots, n\}$, where n is an integer ≥ 2) is certain to occur but certainly no more than two occur. Show that if the probability of occurrence of any single event is p, and the probability of joint occurrence of any two distinct events is q, we have $p \geq 1/n$ and $q \leq 2/[n(n-1)]$.

Solution 2. Since $1 = \Pr(\bigcup_{r=1}^n A_r) \leq \sum_{r=1}^n \Pr(A_r) = np$, we see that $p \geq 1/n$.

Let $I := \{(i,j) \in \{1, \ldots, n\}^2 : i \neq j\}$ be the set of pairs of distinct indices, avoiding repetition. Notice that the events $\{A_i \cap A_j : (i,j) \in I\}$ are pairwise disjoint, so by countable additivity,
\[1 \geq \Pr\left(\bigcup_{(i,j) \in I} (A_i \cap A_j) \right) = \sum_{(i,j) \in I} \Pr(A_i \cap A_j) = \binom{n}{2} q, \]

so $q \leq \binom{n}{2}^{-1} = 2/[n(n-1)]$.

Problem 3. Consider a sphere that has $\frac{1}{10}$ of its surface colored blue, and the rest is colored red. Show that, no matter how the colors are distributed, it is possible to inscribe a cube in the sphere with all of its vertices red.

Hint: Carefully define some relevant events.
Solution 3. Pick an inscribed cube uniformly at random, enumerate its vertices, and let B_i be the event that vertex i is blue. Note that:

$$\Pr(B_1 \cup \cdots \cup B_8) \leq \sum_{i=1}^{8} \Pr(B_i) = \sum_{i=1}^{8} \frac{1}{10} = \frac{8}{10} < 1$$

In other words, the probability of at least one vertex being blue is less than 1, so there must exist an inscribed cube where each vertex is red.

Note: This is an example of a powerful tool known as the probabilistic method.

Problem 4. [Extra] The Countable Union Bound
Let A_1, A_2, \ldots be a countable sequence of events. Prove that the union bound holds for countably many events:

$$\Pr\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \Pr(A_i).$$

Solution 4. Define $A'_1 = A_1$ and $A'_i = A_i \setminus \bigcup_{j=1}^{i-1} A_j$ for $i \in \mathbb{N}, i \geq 2$. Now, the A'_i for $i \in \mathbb{Z}_{>0}$ are disjoint, and $\bigcup_{i=1}^{\infty} A'_i = \bigcup_{i=1}^{\infty} A_i$, so $\Pr(\bigcup_{i=1}^{\infty} A_i) = \Pr(\bigcup_{i=1}^{\infty} A'_i) = \sum_{i=1}^{\infty} \Pr(A'_i)$. Also for all $i \in \mathbb{Z}_{>0}$ we have $\Pr(A'_i) \leq \Pr(A_i)$ since $A'_i \subseteq A_i$, so $\Pr(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \Pr(A_i)$.

Note: The fact we used above is that if $B \subseteq A$, then $\Pr(B) \leq \Pr(A)$; this follows because $A = B \cup (A \setminus B)$ is a disjoint union, so $\Pr(A) = \Pr(B) + \Pr(A \setminus B) \geq \Pr(B)$.

2