1. Jump Chain Stationary Distribution

Use properties of transient states and the jump chain to find the stationary distribution of this CTMC.

2. Sub-Critical Forest

Consider a random graph $G(n, p(n))$ where $p(n) = o\left(\frac{1}{n}\right)$ (this is called the sub-critical phase). Show that the probability that $G(n, p(n))$ is a forest, i.e. contains no cycles, tends to 1 as $n \to \infty$.

Hint: Let X_n be the number of cycles, and use Markov’s inequality.

3. Random Graph

Consider a random undirected graph on n vertices, where each of the $\binom{n}{2}$ possible edges is present with probability p independently of all the other edges. If $p = 0$ we have a fully empty graph with n completely disconnected vertices; in contrast, if $p = 1$, every edge exists, the network is an n-clique, and every vertex is a distance one from every other vertex.

(a) Fix a particular vertex of the graph, and let D be a random variable which is equal to the degree of this vertex. What is the PMF of D? Calculate $\lambda \triangleq \mathbb{E}[D]$.

(b) Assume that $c = np$ is a constant, independent of n. For large values of n, how you would approximate the PMF of D?