Codes for Efficient Transmission of Data

Introduction

When sending packets of data over a communication channel such as the internet or a radio channel, packets often get erased. Because of this, packets must be sent under some erasure code such that the data can still be recovered. In CS 70, you may have learned about an erasure code that involves embedding the data in a polynomial, and then sampling points from that polynomial. There, we assumed that there were at most k erasures in the channel. This week, we'll explore a different channel model in which each packet independently has a probability p of being erased. In particular, this lab will look at random bipartite graphs (the balls and bins model).

A little more on the channel and the erasure code; formally, our channel is called the binary erasure channel (BEC), where bits that are sent through a noisy channel either make it through unmodified or are tagged as "corrupt", in which case the received information is dropped in all further information processing steps. Here’s an image that shows what happens.

If we wanted to convey a message, we could consider a feedback channel in which the receiver tells the sender which messages were received and the sender re-sends the dropped packets. This process can be repeated until the receiver gets all of the intended message. While this procedure is indeed optimal in all senses of the word, feedback is simply not possible in many circumstances. If Netflix is trying to stream a show chunked into n data chunks to a million people, its servers can’t process all the feedback from the users. Thus, Netflix must use a method independent of feedback. If they use near-optimal codes to encode and constantly send out the same random chunks of the video’s data to all users, then they can be sure that users get what they need in only a little more than n transmissions

no matter what parts of the show each individual user lost through their specific channel!

So what's the secret to this magic? It's a two step process of clever encoding and decoding:
Encoding
1. Suppose your data can be divided into n chunks. First, pick an integer d ($1 \leq d \leq n$) according to some distribution.
2. With d picked, now select d random chunks of the data and combine their binary representations together using the XOR operator.
3. Transmit these chunks, along with the metadata telling which actual chunk indices were XOR'd, as a packet. If a packet is erased, both the chunks it contains and the chunk indices would be lost.

Decoding
1. For each packet that has been received, check if it only contains one chunk, in which case the packet is exactly equal to the single chunk it contains. If not, we can check if any of the chunks in the packet are already known, in which case XOR that chunk with the packet and remove it from the list of chunk indices that make up the packet.
2. If there are two or more indices in the list left for the packet we cannot figure out any more information! Put it on the side for looking at later.
3. With any newly decoded information, we may be able to decode previously undecodable packets that we had put on the side. Go through all unsolved packets and try to decode more packets until nothing more can be done.
4. Wait for the next packet to come and repeat!

Now what’s left for you to do? Well, remember that number d? It needs to be picked according to some distribution, and which distribution is the million dollar question!

Example
Consider the above bipartite graph. Here, the right square nodes represent the packets, and the left circular nodes represent the data chunks (X_i, $i = 1, \ldots, 4$). There is an edge from a packet to a chunk if the packet contains that chunk. Let’s try decoding the packets chronologically.

1. Since the first packet contains only the third data chunk, we are able to immediately resolve it and find that $X_3 = 1$.
2. The second packet contains the second and third chunks XOR’d together. Since we already know the third chunk however, we can XOR the third chunk ($X_3 = 1$) with the data packet (0) to get the value of the second data chunk, $X_2 = 1$.
3. The third packet contains the XOR of data chunks 1, 2, and 4. We have already determined chunks 2 and 3, so we are able to XOR 2 from this packet, but are still left with 1 and 4, and so must move on.
4. With the arrival of the fourth packet, we are able to resolve everything: data chunks 2 and 3 are already determined, and so we are able to XOR chunk 3 ($X_3 = 1$) with this new data packet (1) to get the value of the chunk 4, $X_4 = 0$. With this new information, we are able to resolve X_1, as packet 3 gave us the equation $1 = X_1 \oplus X_2 \oplus X_4 = X_1 \oplus 1 \oplus 0$. We can solve this to get $X_1 = 0$.
5. We have now solved for all the data chunks, with $X_1 = 0, X_2 = 1, X_3 = 1, X_4 = 0$.

As you might be able to tell, by choosing a good degree distribution for d, even when random incoming packets were lost (not shown), you were still able to recover all 4 symbols only from 4 received packets, despite the sender not knowing what packets you lost through the BEC.
Question 1. Code

We've provided you with some starter code, including a Packet class, a Transmitter class, a Channel class, and a Receiver class. Your job is to complete the receive_packet() function in the Receiver class. Feel free to write any additional functions that you may need.

1) Packet Class & Utility functions

A packet consists of...

['chunk_indices', 'data ']

chunk_indices: Which chunks are chosen

data: The 'XOR'ed data

```python
In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import json
import random
class Packet:
    size_of_packet = 256
    def __init__(self, chunks, chunk_indices):
        self.data = self.xor(chunks)
        self.chunk_indices = chunk_indices

    def xor(self, chunks):
        tmp = np.zeros(Packet.size_of_packet, 'uint8')
        for each_chunk in chunks:
            tmp = np.bitwise_xor(tmp, each_chunk)
        return tmp

    def num_of_chunks(self):
        return len(self.chunk_indices)
```

2) Transmitter & Encoder Class

You can initiate an encoder with a string! Then, generate_packet() will return a randomly encoded packet.
In [2]:
from __future__ import division
from scipy import stats
from random import randrange

def rho(d, K):
 if d == 0:
 return 0
 elif d == 1:
 return 1/K
 else:
 return 1/(d * (d-1))

def tau(d, K, c, delta):
 S = c * np.log(K/delta) * np.sqrt(K)
 if d == 0:
 return 0
 elif d == K/S:
 return (S/K) * np.log(S/delta)
 elif d > K/S:
 return 0
 else:
 return (S/K) * (1.0/d)

def robust_dist(num_chunks, c=0.33, delta=0.39):
 z = sum([rho(d,num_chunks) + tau(d, num_chunks, c, delta) \n for d in range(num_chunks)])
 xk = np.arange(num_chunks)
 pk = [(rho(d, num_chunks) + tau(d, num_chunks, c, delta))/z \n for d in range(num_chunks)]
 return stats.rv_discrete(name='robust', values=(xk,pk))

def comp_dist(num_chunks, c=0.33, delta=0.39):
 pk = np.array([(rho(d,num_chunks) + tau(d, num_chunks, c, delta)) * (1+2*d/num_chunks) \n for d in range(num_chunks)])
 pk /= sum(pk)
 xk = np.arange(num_chunks)
 return stats.rv_discrete(name='robust', values=(xk,pk))

class Transmitter:
 def __init__(self, chunks, channel, degree_distribution, c=0.33, delta=0.2):
 self.chunks = chunks
 self.num_chunks = len(chunks)
 self.channel = channel
 self.degree_distribution = degree_distribution
 self.robust = robust_dist(self.num_chunks, c, delta)
 self.counter = c
 if degree_distribution == 'competition':
 self.comp = comp_dist(self.num_chunks, c, delta)
 self.calculate_transmission()

 def calculate_transmission(self):
 self.d = self.comp.rvs(size=1536)
 self.d.sort()
 self.d = np.concatenate(([1]*512,self.d))
```python
def generate_new_packet(self, num_sent=None):
    if self.degree_distribution == 'single':
        # Always give a degree of 1
        n_of_chunks = 1
    elif self.degree_distribution == 'double':
        # Always give a degree of 2
        n_of_chunks = 2
    elif self.degree_distribution == 'mixed':
        # Give a degree of 1 half the time, 2 the other half
        if random.random() < 0.5:
            n_of_chunks = 1
        else:
            n_of_chunks = 2
    elif self.degree_distribution == 'baseline':
        # Randomly assign a degree from between 1 and 5.
        # If num_chunks < 5, randomly assign a degree from
        # between 1 and num_chunks
        n_of_chunks = random.randint(1, min(5, self.num_chunks))
    elif self.degree_distribution == 'sd':
        # Soliton distribution
        tmp = random.random()
        n_of_chunks = -1
        for i in range(2, self.num_chunks + 1):
            if tmp > 1 / np.double(i):
                n_of_chunks = int(np.ceil(1 / tmp))
                break
        if n_of_chunks == -1:
            n_of_chunks = 1
    elif self.degree_distribution == 'robust_sd':
        # Robust soliton
        n_of_chunks = self.robust.rvs(size=1)[0]
    elif self.degree_distribution == 'competition':
        try:
            n_of_chunks = self.d[num_sent]
        except IndexError:
            # on the off chance it takes >2048 packets, just draw fr
            om the distribution again
            n_of_chunks = self.comp.rvs()
    elif self.degree_distribution == 'deterministic':
        n_of_chunks = 1
        chunk_indices = [int(self.counter % 1024)]
        self.counter += 1
    else:
        chunk_indices = random.sample(range(self.num_chunks), n_of_chunks)
        chunks = [self.chunks[x] for x in chunk_indices]
        return Packet(chunks, chunk_indices)

def transmit_one_packet(self, num_sent=None):
    packet = self.generate_new_packet(num_sent)
    self.channel.enqueue(packet)
```

3) Channel Class

Channel class takes a packet and erase it with probability ϵ.

```python
In [3]: class Channel:
    def __init__(self, eps):
        self.eps = eps
        self.current_packet = None

    def enqueue(self, packet):
        if random.random() < self.eps:
            self.current_packet = None
        else:
            self.current_packet = packet

    def dequeue(self):
        return self.current_packet
```

4) Receiver & Decoder Class

You can initiate a decoder with the total number of chunks. Then, `add_packet()` will add a received packet to the decoder.
In [4]:

class Receiver:
 def __init__(self, num_chunks, channel):
 self.num_chunks = num_chunks

 # List of packets to process.
 self.received_packets = []

 # List of decoded chunks, where self.chunks[i] is the original chunk x_i.
 self.chunks = np.zeros((num_chunks, Packet.size_of_packet), dtype =np.uint8)

 # Boolean array to keep track of which packets have been found,
 # where self.found[i] indicates # if x_i has been found.
 self.found = [False for x in range(self.num_chunks)]
 self.channel = channel

 def receive_packet(self):
 packet = self.channel.dequeue()
 if packet is not None:
 self.received_packets.append(packet)
 chunk_indices_iter = list(packet.chunk_indices)
 for chunk_idx in chunk_indices_iter:
 if rx.found[chunk_idx]:
 packet.chunk_indices.remove(chunk_idx)
 packet.data = np.bitwise_xor(packet.data, self.chunks[chunk_idx])
 if packet.num_of_chunks() == 1:
 self.peeling()

 def peeling(self):
 flag = True
 while flag:
 flag = False
 for packet in self.received_packets:
 if packet.num_of_chunks() == 1: # Found a singleton
 flag = True
 idx = packet.chunk_indices[0]
 break

 # First, declare the identified chunk
 if not self.found[idx]:
 self.chunks[idx] = np.array(packet.data, 'uint8')
 self.found[idx] = True

 # Second, peel it off from others
 for packet in self.received_packets:
 if idx in packet.chunk_indices:
 packet.chunk_indices.remove(idx)
 packet.data = np.bitwise_xor(packet.data, self.chunks[idx])

 def isDone(self):
 return self.chunksDone() == self.num_chunks
def chunksDone(self):
 return sum(self.found)

Question 2. Sending the raccoon

In [5]:
 from scipy import misc
 import matplotlib.cm as cm

 # pip3 install pillow
 from PIL import Image
 import numpy as np

 l = np.asarray(plt.imread("raccoon.jpg"))
 #converts the image to grayscale
 x = np.zeros((512,512),dtype=np.uint8)
 for i in range(512):
 for j in range(512):
 x[i][j] = l[i][j][0]*0.299+l[i][j][1]*0.587+l[i][j][2]*0.113

 plt.imshow(x, cmap = cm.Greys_r)

Out[5]: <matplotlib.image.AxesImage at 0x10e9f6bd0>

Out[5]:

a. Break up the image shown below into 1024 chunks of size 256 each.

In [6]:
 tt = x.reshape(1,512*512)[0]
 size_of_packet = 256
 num_of_packets = 1024
 assert len(tt) == size_of_packet * num_of_packets

 #YOUR CODE HERE
 chunks = tt.reshape((num_of_packets,size_of_packet))
b. Here's a function that simulates the transmission of data across the channel. It returns a tuple containing the total number of packets sent, the intermediate image every 512 packets and the final image, and the number of chunks decoded every 64 packets. You'll use it next question.

```python
In [7]: #Returns a tuple (packets sent, intermediate image every 512 packets + final image, chunks decoded every 64 packets)
def send(tx, rx, verbose=False):
    threshold = rx.num_chunks * 20
    num_sent = 0
    images = []
    chunks_decoded = []
    while not rx.isDone():
        tx.transmit_one_packet(num_sent)
        rx.receive_packet()
        if num_sent % 512 == 0:
            images.append(np.array(rx.chunks.reshape((512,512))))
            if verbose:
                print(num_sent, rx.chunksDone())
        if num_sent % 64 == 0:
            chunks_decoded.append(rx.chunksDone())
            num_sent += 1
        if num_sent > threshold:
            print("Ending transmission because too many packets have been sent. This may be caused by a bug in " +
            "receive_packet or an inefficient custom strategy.")
            break
    chunks_decoded.append(rx.chunksDone())
    images.append(rx.chunks.reshape((512,512)))
    return (num_sent, images, chunks_decoded)
```

c. Using the 'single' degree distribution defined in the Transmitter class, send the raccoon over a channel with erasure probability 0.2. How many packets did you need to send? Display the data you receive every 512 packets in addition to the data you receive at the end.
You may find the following function useful:

```python
In [8]: def visualize(image):
    #visualize takes in a 512 x 512 image. Therefore, you can't just pass in the chunks, which are 1024 x 256.
    plt.imshow(image, cmap = cm.Greys_r)
```
In [9]:
#YOUR CODE HERE
#you'll need to change the values
eps = 0.2
ch = Channel(eps)
Tx = Transmitter(chunks, ch, 'single')
Rx = Receiver(len(chunks), ch)

single_sent, images, single_decoded = send(tx, rx)

print("The number of packets received: {}".format(single_sent))

Show the intermediate data and the final picture
n_of_figures = len(images) #YOUR CODE HERE
fig = plt.figure(figsize=(8, 3*n_of_figures))

for i in range(n_of_figures):
 fig.add_subplot(n_of_figures,1,i+1)
 #YOUR CODE HERE
 visualize(images[i])
The number of packets received: 8692
d. Plot the number of chunks decoded as a function of the number of packets you send. (The chunks_decoded array should be helpful here)

```python
#Plot the number of chunks decoded against the number of packets sent
plt.plot(list(range(0,single_sent,64))+[single_sent],single_decoded)
plt.xlabel("Number of packets sent")
plt.ylabel("Number of chunks decoded")
```

```
Out[10]: Text(0, 0.5, 'Number of chunks decoded')
```

```
```

e. Looking at the graph, we see that it gets harder and harder to find the rest as we decode more and more chunks. Does this remind you of a well known theoretical problem?

Hint: Try out some small examples!

Coupon Collector Problem

f. Using the 'double' degree distribution defined in the Transmitter class, send the raccoon over a channel with erasure probability 0.2. Don't worry about intermediate plots this time. What happens?
In [11]:
#YOUR CODE HERE
eps = 0.2
ch = Channel(eps)
tx = Transmitter(chunks, ch, 'double')
rx = Receiver(len(chunks), ch)

#YOUR CODE HERE
double_sent, images, double_decoded = send(tx, rx)

print("The number of packets received: {}".format(double_sent))

Ending transmission because too many packets have been sent. This may be caused by a bug in receive_packet or an inefficient custom strategy.
The number of packets received: 20481

It stalls because there is never a singleton packet. Therefore, in this case, our current algorithm can't solve for anything.

Question 3. Randomized Distributions

a. You have seen two degree distributions so far. Both of these have been deterministic, and one worked better than the other. Let's try a different degree distribution. Using the 'baseline' degree distribution, send the raccoon over a channel with erasure probability 0.2 over multiple trials. For each trial, record the number of packets sent for the image to be decoded.
In [12]:
num_trials = 10
#YOUR CODE HERE
eps = 0.2
ch = Channel(eps)
tx = Transmitter(chunks, ch, 'baseline')
packets_required = []

for _ in range(num_trials):
 #YOUR CODE HERE
 rx = Receiver(len(chunks), ch)
 baseline_sent, images, baseline_decoded = send(tx, rx)
 packets_required.append(baseline_sent)

#Plot this as a histogram
#YOUR CODE HERE
print(packets_required)
plt.hist(packets_required)

[3231, 3118, 3007, 3181, 3238, 2952, 2997, 2884, 3417, 3165]

Out[12]: (array([1., 1., 2., 0., 1., 2., 2., 0., 0., 1.]),
array([2884. , 2937.3, 2990.6, 3043.9, 3097.2, 3150.5, 3203.8, 3257.1,
 3310.4, 3363.7, 3417.]),
<a list of 10 Patch objects>)

b. Soliton and Robust Soliton
In [13]:
eps = 0.2
ch = Channel(eps)

tx_soliton = Transmitter(chunks, ch, 'sd')

#repetition erasure code
#tx_deterministic = Transmitter(chunks, ch, 'deterministic', 0)

soliton_decoded, robust_decoded, deterministic_decoded = [], [], []

Set the aspect ratio such that the image is wide
width, height = plt.figaspect(0.2)
fig = plt.figure(figsize=(width,height))
plt.figure()
plt.plot(range(0,single_sent+64,64), single_decoded, label="single")
plt.plot(range(0,baseline_sent+64,64), baseline_decoded, label="baseline")
plt.plot(range(0,soliton_sent+64,64), soliton_decoded, label="soliton")
plt.plot(range(0,robust_sent+64,64), robust_decoded, label="robust soliton")
plt.legend()
plt.xlabel("number of packets sent")
plt.ylabel("number of packets decoded")
plt.show()

#packets needed for robust soliton: {0}, Packets needed for soliton: {1}, Packets needed for baseline: {2}.format(robust_sent, soliton_sent, baseline_sent)
Some Final Comments

The codes we asked you to look at and create are known generally as fountain codes. As you have seen above, we implemented two types of degree distributions: soliton and robust soliton. It turns out that the soliton distribution, which was discovered and named by the creator of LT Codes, Michael Luby, is ideal in expectation. It seems that it would be most beneficial for there to be one check node with degree 1 at each iteration. In expectation, the ideal soliton distribution achieves this. Unfortunately in practice, it fares much more poorly. To account for that, we use what is called the robust soliton distribution\(^1\).

- Soliton: \[\rho(d) = \begin{cases} \frac{1}{K} & \text{if } d = 1 \\ \frac{1}{d(d-1)} & \text{if } d = 2, 3, ..., K \end{cases} \]

- Robust Soliton: \[\mu(d) = \frac{\rho(d)+\tau(d)}{\sum_k \rho(k)+\tau(k)} \]

where

\[\tau(d) = \begin{cases} \frac{S}{K} \cdot \frac{1}{d} & \text{if } d < K/S \\ \frac{S}{K} \ln \left(\frac{S}{\delta} \right) & \text{if } d = K \\ 0 & \text{if } d > K/S \end{cases} \]

and \[S = c \ln \left(\frac{K}{\delta} \right) \sqrt{K} \]. For more information, please see [1].
Competition

Alice has just finished eating dinner, and with her EECS 126 homework completed early for once, she plans to sit down for a movie night (she wants to make use of the 30-day free trial of Netflix!). While Alice is surfing Netflix she decides she wants to stream Interstellar. Alice’s laptop drops packets with $p = 0.2$. You, the Chief Technology Officer of Netflix, know that given the heavy workload of EECS 126, this may be your only chance to convert this freeloading customer into a permanent one, but to do so you’re going to have to make sure her viewing experience is perfect.

Concrete specs:

- You are given an erasure channel with drop probability $p = 0.2$.
- You must define a degree distribution (which can vary as a function of the # of transmissions already sent) to minimize the number of total packets needed to be sent for the raccoon to be decoded. Run your code for 10 trials to get a good estimate of the true number of transmissions needed per image while they watch their movies. Each trial, your score is
 \[
 \text{score} = \frac{\text{# of packets successfully decoded from the first 512 packets}}{512} + \frac{\text{# of packets successfully decoded from the first 1024 packets}}{1024} + \left[\frac{\text{# of packets successfully decoded from the first 4096 packets}}{1024} \right] + \left[\frac{\text{# of packets successfully decoded from the first 6144 packets}}{1024} \right]
 \]
- Note the floor function in the later stages - you can only get the point if you fully decode the file with the allotted number of packets
- You may work in teams of up to three.
- One thing you can do is add a packets sent argument with a default argument None to generate and transmit in Transmitter

Good luck!

If you place in the top 3 in the class you will be awarded bonus points!

```
In [14]: from math import floor

def score(chunks_decoded):
    c_d = chunks_decoded
    s = c_d[8]/512+c_d[16]/1024
    arr = [33, 65, 97]
    for i in arr:
        if i >= len(c_d):
            s += 1
    return s
```
Remarks on Competition

Technically, if you are allowed to deterministically choose which chunks to send, the best thing to do is to send each of the 1024 chunks as individual packets. That would lead to a decode rate of $1 - \epsilon ps = 0.8$, which is optimal since no redundant information is sent. After sending the first 1024, if you modify robust soliton distribution, you can still everything within the next 1024, leading the roughly a score of 4.6.

However, since we specified to only create a degree distribution, one good idea you could do is send a bunch of singletons (say 512) in the beginning and then use modify the robust soliton distribution for the rest. To adjust for the fact that you are sending a lot of singletons in the beginning, you could linearly scale the robust soliton distribution so that it sends packets of higher degree more. You should still prechoose the degrees to send and importantly, sort them in ascending order to maximize early decodes. This, shown below, gets a score of roughly 4.2.
In [15]:
eps = 0.2
ch = Channel(eps)

s = 0
avg = 0
trials = 40
for i in range(trials):
 tx_competition = Transmitter(chunks, ch, 'competition', 0.1, 0.05)
 rx = Receiver(len(chunks), ch)
 comp_sent, images, comp_decoded = send(tx_competition, rx)
 s += score(comp_decoded)
 avg += comp_sent
print("Score: {}".format(s/trials))
print("Sent: {}".format(avg/trials))

plt.plot(range(0,comp_sent+64,64), comp_decoded, label="comp")
plt.plot(range(0,robust_sent+64,64), robust_decoded, label="robust soliton")
plt.legend()
print(comp_sent)

Score: 4.2421142578125
Sent: 2025.175
2008

Results
Report the average score (averaged over 10 trials):

Average Score: <INSERT HERE>
Summary
Answer the following in 1-2 paragraphs (this should be answered individually):

- Who were your teammates?
- What did you learn?
- What is the basic intuition behind your final strategy?
- How did your strategy evolve from your first attempt (what worked and what failed)?
- How would your strategy change if the value of p of the BEC was not known?

Your Response Here

References