Pocket Planet

Authors:

v1.0 (2020 Spring) Alexander Khazatsky, William Gan, Kannan Ramchandran

Introduction

In this lab, we'll be studying Interactive Particle Systems (IPS). IPS is a good model for understanding can be viewed as an extension of Markov chains. In a Markov chain, the key is the Markov property, which depends on our current state. This is true in an IPS model as well.

To be more concrete, in this lab, we'll try to understand how biological evolution is affected by things such as environment, etc. To do so, we'll setup a world and treat organisms as particles. At each step, these organisms interact with other, etc.

```python
from pocket_planet_utils import *
```

Part 1: Perlin Noise

Before, we setup our IPS model, however, first we'll create our world. But, how do we generate elevations? We have been poured into this, and one method which has been successful is Perlin noise (Wikipedia) (Blog). In Minecraft, and in this portion, we'll see how to implement it. Below you will find perlin noise in 1, 2, and 3 dimensions.

We will design our world to be a 100 pixel by 100 pixel square with 7 terrains: ocean, shallows, sand, dunes, desert, grassland, and mountain. Each terrain will correspond to an elevation range, and so to generate our world, we just need to generate a 100x100 array of elevations. The following pictures show what the elevations and worlds should end up looking like.

Now, to generate the functions of each frequency, we create a \((l + 1) \times (l + 1)\) array of unit gradient vectors left, where \(l\) is the maximum frequency (in the above picture, it is 128). Each square in this grid has 4 vectors on the right.

Question 1a. In the cell below, generate **n-dimensional gradient vectors with unit length**. Each gradient vector is \(\mathbf{v} \sim \mathcal{N}(0, I_n)\), and then normalizing it to be unit length.

```python
def generate_gradient(n):
```
START YOUR MAGNIFICENT CODE HERE
grad = np.random.normal(size=n)
norm = np.linalg.norm(grad)
gradient = grad / norm
END YOUR MAGNIFICENT CODE HERE
return gradient

Question 1b. In the cell below, **generate the array of gradients** for the 2D case as a NumPy array with

```python
def generate_corner_gradients(l):
    # START YOUR MAGNIFICENT CODE HERE
    corners = np.array([generate_gradient(2) for _ in range((l+1) * (l+1))])
corners = corners.reshape(l+1, l+1, 2)
    # END YOUR MAGNIFICENT CODE HERE
return corners
```

Now comes the interpolation part. For a general point in \([0, l] \times [0, l]\), find which square it lies by looking coordinates. Then, fill in the code to compute the dot product of the gradient vector and "delta" vector lies in. The "delta" vectors for a point in one of the \(l \times l\) squares is shown below.

Question 1c. In the cell below, given the \((l + 1) \times (l + 1)\) array of gradients and a point whose coordinates, compute the 4 dot products as a 2 x 2 NumPy array. **Make sure your in your result, the [0,0] entry corresponds to the bottom left corner, etc.**

```python
def compute_dot_products(gradients, x, y):
    # START YOUR MAGNIFICENT CODE HERE
    floor_x, floor_y = int(x), int(y)
    ceil_x, ceil_y = floor_x + 1, floor_y + 1
    corner_coords = np.array([[floor_x, floor_y], [ceil_x, floor_y],
                               [floor_x, ceil_y], [ceil_x, ceil_y]])
    # END YOUR MAGNIFICENT CODE HERE
    corner_gradients = gradients[floor_y: ceil_y+1, floor_x: ceil_x+1]
delta = np.array([x, y]) - corner_coords
return np.sum(corner_gradients * delta, axis=2)
```

Now we want to interpolate a value at \((x, y)\) given the values at the 4 corners. It turns out a nice function polynomial.

```python
def smooth_interp(t, a, b):
    smooth_t = 6*t**5 - 15*t**4 + 10*t**3
    return (1 - smooth_t) * a + smooth_t * b
```

Bilinearly interpolate.
```python
def interpolate(dots, x, y):
    dx = x - np.floor(x)
    dy = y - np.floor(y)
    interp1 = smooth_interp(dx, dots[0, 0], dots[0, 1])
    interp2 = smooth_interp(dx, dots[1, 0], dots[1, 1])
    interp = smooth_interp(dy, interp1, interp2)
    return interp
```

Now to put everything together, even though our array of gradients corresponds to a point in $[0, l] \times [0, 1]$, the world will just correspond to a point $[0, 1] \times [0, 1]$. However, we will still use the rest of the array as functions by mapping a point $x, y \in [0, 1] \times [0, 1]$ to $f \cdot x, f \cdot y \in [0, l] \times [0, l]$, where f is the

```python
def generate_world(size=100, l=4):
    grad = generate_corner_gradients(2 ** l + 1)
    units = np.linspace(0, 1, size)
    rescale_factor = (2 ** 0.5)
    grid = np.zeros((size, size))
    for i, x in enumerate(units):
        for j, y in enumerate(units):
            for log_f in range(l):
                f = 2 ** log_f
                amp = 1 / f
                new_x = x * f
                new_y = y * f
                dots = compute_dot_products(grad, new_x, new_y)
                val = interpolate(dots, new_x, new_y)
                rescaled_val = val * rescale_factor
                grid[j][i] += rescaled_val * amp
    grid /= 2 - 2 ** (1 - l)
    return grid
```

You may have to run this cell and the cell below several times to get the world you want.

```python
fig, ax = plt.subplots(1, 4, figsize=(20, 4))
test_worlds = []
fig.suptitle('2D Perlin Noise with Different l')
for l in range(4):
    world = generate_world(l=l+1)
    test_worlds.append(world)
    ax[l].set_title(f'l={l+1}')
    im = ax[l].imshow(world)
    fig.colorbar(im, ax=ax[l], fraction=0.046, pad=0.04)
```
fig, ax = plt.subplots(1, 4, figsize=(16, 4))
fig.suptitle('Uninhabited Worlds with Different l')
for l in range(4):
 uninhabited_world = get_uninhabited_world(test_worlds[l])
 ax[l].set_title(f'l={l+1}')
 im = ax[l].imshow(uninhabited_world)

Use the knobs below to visualize worlds with defined height vectors for the enviorment types.

grid = generate_world()

@interact(ocean=h_o, shallows=h, beach=h, dirt=h, inland=h, mountain=h)
def toggle_ground_heights(ocean=0.01, shallows=0.075, beach=0.15, dirt=0.2, inland=0.3, mountain=0.4):
Part 2: Bringing Particles To Life

Now that we have our planet, we can set up our IPS system. The idea is our particles will be able to move; we need to define the state of a particle. For this lab, we'll assume all organisms are trees. Each tree has k archetypes, where k is the number of inhabitable environment types on our planet. Note that this must be nonnegative and sum to 1. You will find the inhabitable environment types, and their corresponding initial DNA.

So, for example, a DNA of $[0.05, 0.05, 0.05, 0.8, 0.05]$ will be a tree well suited to live in the Inland environment.

- Initially, a tree's DNA will be generated by sampling a vector from $\mathcal{N}(0, I_k)$, and then dividing by its sum.
- Each time step, a tree may have offspring (seeds) whose DNA will be slightly mutated. The offspring DNA is generated from $\mathcal{N}(\text{parent DNA}, \sigma_{\text{mutation}}^2)$, and then dividing this vector by its sum. So the current DNA will be used as the mean for the multivariate normal distribution, and then after taking the absolute values with something like $[0.03, 0.06, 0.06, 0.78, 0.07]$.

Question 2a. In the following cell, fill out the functions for generating the initial random DNA as well as for generating offspring:

```python
class Tree(AbstractTree):
    def initialize_random_dna(self, k):
        # START YOUR MAGNIFICENT CODE HERE
        unnormalized_dna = np.abs(np.random.normal(0, 1, self.traits_dim))
        dna = unnormalized_dna / np.sum(unnormalized_dna)
        # END YOUR MAGNIFICENT CODE HERE
        self.dna = dna

    def generate_offspring(self, mutation_var):
        # START YOUR MAGNIFICENT CODE HERE
        unnormalized_dna = np.abs(np.random.normal(self.dna, mutation_var**0.5))
        offspring_dna = unnormalized_dna / np.sum(unnormalized_dna)
        # END YOUR MAGNIFICENT CODE HERE
        return Tree(dna=offspring_dna)
```

Visualize DNA.

```python
@interact(x_1=r, x_2=r, x_3=r, x_4=r, x_5=r)
def f(x_1, x_2, x_3, x_4, x_5):
    unnormalized_DNA = np.array([x_1, x_2, x_3, x_4, x_5])
    DNA = unnormalized_DNA / np.sum(unnormalized_DNA)
```
Part 3: Defining The Mechanics

Now that we have our particles (AKA our trees), we can define the mechanics that govern them.

- Our world will initially be empty, but at each time step, a tree can magically appear in a square with some probability.
- Given a tree is currently in a square, it survives each time step with some probability (age_tree).
- Given it survives, it can then also generate a number of offspring $\sim Binom(sel \ f. \ max \ seeds, (generate \ offspring))$.
- Finally, if a bunch of offspring (seeds) are on a square in our world, they will need to participate in a life cycle. Because we want trees with higher fitnesses to have a higher probability of winning, we will sample from a Boltzmann distribution. Implement the Boltzmann distribution as follows:

 - $energy[i] = exp(self.comp_constant * fitness[i])$
 - $P[winner = i] := \frac{energy[i]}{\sum(energy)}$

Question 3a. Fill out the following class.

```python
class Square(AbstractSquare):
```

https://colab.research.google.com/drive/1pF_YmmSu9wpwQ3ZDmC3vBqOYpZjkPLS?authuser=1#printMode=true
def simulate_life_creation(self):
 # START YOUR MAGNIFICENT CODE HERE
 p = np.random.uniform() < self.life_prob
 # END YOUR MAGNIFICENT CODE HERE

 if p: self.plant_seed(Tree())

def age_tree(self):
 if not self.contains_tree():
 return

 survival_prob = self.tree.calc_fitness(self.env_type)

 # START YOUR MAGNIFICENT CODE HERE
 p = np.random.uniform() > survival_prob
 # END YOUR MAGNIFICENT CODE HERE

 if p: self.terminate_tree()

def generate_offspring(self):
 if not self.contains_tree():
 return []

 fitness = self.tree.calc_fitness(self.env_type)

 # START YOUR MAGNIFICENT CODE HERE
 num_offspring = np.random.binomial(self.max_seeds, fitness)
 # END YOUR MAGNIFICENT CODE HERE

 offspring = [self.tree.generate_offspring(self.mutation_var)
 for i in range(num_offspring)]
 return offspring

def sample_boltzmann_distribution(self, fitness, return_dist=False):
 # START YOUR MAGNIFICENT CODE HERE
 energy = np.exp(self.comp_constant * fitness)
 probabilities = energy / np.sum(energy)
 # END YOUR MAGNIFICENT CODE HERE

 if return_dist:
 return probabilities

 winner_index = random.choices(np.arange(0, len(fitness)), probabilities)[0]
 return winner_index

Question 3b. We can now visualize evolution for a single square in our world. Based on your investigations:

1) What would you guess is the environment type of the square?

 - Environment Type #2
2) How does mutation variance affect convergence?
 • It makes the convergence progression more volatile when very high, and more slow and steady when lower.

3) In a rapidly changing environment, would we want a high or low mutation rate? What about in a predator-prey scenario?
 • In a rapidly changing environment, we want a high mutation variance so we can keep up with changes. In a predator-prey scenario, we want a low mutation variance so we can converge steadily and stay there.

4) How does the competition constant affect convergence?
 • It affects the entropy of DNA at convergence. When it is high, we have very low entropy in the DNA; when it is low, we have very high entropy.

```python
var = 0.01
comp_constant = 10

square = create_secret_square(var, comp_constant, Square)

for i in range(50):
    plt.pause(0.1)
    clear_output(wait=True)
    psuedo_env_step(square, Tree)
```

Visualizing Competitions

Next we will visualize a competition amongst multiple trees for a single square, and study the effects on the outcome.

Question 3c. Based off the visualizer below, what effect does the competition constant have on the entropy?

*Fun Fact: This concept is the key to a state-of-the-art Reinforcement Learning algorithm called Soft Actor-Critic, which addresses something called the exploration-exploitation tradeoff.

DNA Visualization

- **Survival Probability:**
 - Environment Type 0: 0.0
 - Environment Type 2: 0.8
 - Environment Type 4: 0.2

- **Resultant Tree Color:**
 - Greenish

ANSWERS HERE

```python
@interact(const=(0, 10, 0.5))
```
def visualize_fitness_competition(const=0):
 square = create_secret_square(var, const, Square)
 dist = square.sample_boltzmann_distribution(np.array(example_fitness),
 return_dist=True)

 visualize_competition(dist, entropy(dist))

Q4 Bringing It All Together

You're almost done! All that's left is to make our particles be able to move across squares.

- In `simulate_movement`, we want to be able to move a particle from position i, j. To do this, we'll
to [min_val, max_val], and finally round to the nearest integer.
- In `spread_seeds`, we'll get new positions for a seeds at (i, j) by setting the variance for `simulate`
variance to be `self.waves_var`. Otherwise, set it to be `self.wind_var`.

class World(AbstractWorld):
 def simulate_movement(self, i, j, var):
 coord = np.array([i, j])
 min_val, max_val = 0, self.dim - 1

 # START YOUR MAGNIFICENT CODE HERE
 unclipped_coord = np.random.normal(coord, var**0.5)
 new_coord = np.clip(unclipped_coord, a_min=min_val, a_max=max_val)
 new_coord = np.round_(new_coord).astype('int64')
 # END YOUR MAGNIFICENT CODE HERE
 #Note: make sure the elements of new_coord are integers

 return new_coord[0], new_coord[1]

 def spread_seeds(self, i, j):
 square = self.world[i][j]
 trees = square.get_seeds()

 if square.is_ocean():
 var = self.waves_var
 else:
 var = self.wind_var

 for tree in trees:
 x, y = self.simulate_movement(i, j, var)
 self.world[x][y].plant_seed(tree)

Congratulations!
You’re free! We hope you’ve enjoyed this evolutionary journey. We highly recommend tinkering with this work, you might as well get some fun out of it. If you find any cool properties, feel free to write about it.

```python
world = World(generate_world,
              Square,
              dim=100,
              mutation_var=0.01,
              comp_constant=100,
              wind_var=2,
              waves_var=5)

for i in range(100):
    world.env_step()
```

Question 4a. When life initially starts to spread across the map, the fitness curve is extremely volatile. Why is this?

Once life first begins, it quickly starts to adapt to its current environment. However, the offspring spread not fit for. Although these seeds are not well suited for these new environments, they grow due to the law of large numbers. As populations have grown throughout the map, there is sufficient competition for the law of large numbers.

Question 4b. You might notice that the Coverage progression curve tends to match a sigmoid curve. Why is this?

The fitter a tree gets, the more offspring it has. The more offspring it has, more fit plants there will be. This in combination with the limited land leads to a sigmoid curve.

References