EE 127/227A Final Review Problems

EE 127/227AT: Optimization Models in Engineering
Instructor: Profs. Gireeja Ranade, Venkat Anantharam
Authors: Yigit Efe Erginbas, Kshitij Kulkarni, Chinmay Maheshwari, Aditya Ramabadran, Chih-Yuan Chiu

December 4, 2023

1 Convex and Non-convex Optimization Problems

Fix non-zero vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^{n}$, with $n \geq 2$, fix $\alpha>0, \beta \in \mathbb{R}$, and let $\overrightarrow{0} \in \mathbb{R}^{n}$ denote the n-dimensional zero vector.

1. Is the following optimization problem convex or non-convex? If it is convex, under what conditions do Slater's condition hold? Justify.

$$
\begin{aligned}
\min _{X \in \mathbb{R}^{n \times n}} & \vec{u}^{\top} X \vec{v}, \\
\text { s.t. } & \|X\|_{F}^{2} \leq \alpha, \\
& X \vec{w}=\beta \vec{w} .
\end{aligned}
$$

2. Is the following optimization problem convex or non-convex? If it is convex, under what conditions do Slater's condition hold? Justify.

$$
\begin{aligned}
\min _{X \in \mathbb{R}^{n \times n}} & \vec{u}^{\top} X \vec{v}, \\
\text { s.t. } & \|X\|_{F}^{2}=\alpha, \\
& X \vec{w}=\beta \vec{w} .
\end{aligned}
$$

2 Gradient Descent

1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice-differentiable function that we are attempting to minimize using Newton's method. Suppose that at the $k^{\text {th }}$ iterate $\vec{x}_{k} \in \mathbb{R}^{n}$ we have $\nabla^{2} f\left(\vec{x}_{k}\right)=\alpha_{k} I_{n}$, where $\alpha_{k}>0$ is some positive constant and $I_{n} \in \mathbb{R}^{n \times n}$ is the identity matrix. Write the Newton's method step for \vec{x}_{k+1} in terms of \vec{x}_{k}, α_{k}, and $\nabla f\left(\vec{x}_{k}\right)$.
2. Now suppose we are trying to minimize the same function f via gradient descent. Write the gradient descent step for \vec{x}_{k+1} in terms of \vec{x}_{k} and $\nabla f\left(\vec{x}_{k}\right)$, with some arbitrary step size $\eta_{k}>0$ at time k. For what value of η_{k} is the gradient descent update equation the same as the Newton's update equation from the last part?

3 Duality (Fall 2022 Final)

Consider a convex function

$$
\begin{equation*}
f(\vec{x})=\frac{1}{2}\left(x_{1}+1\right)^{2}+x_{2}^{2}, \quad \forall \vec{x}=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} . \tag{3.1}
\end{equation*}
$$

Suppose that we wish to minimize $f(\vec{x})$ subject to the linear constraint $x_{1}=0$.

1. Find the primal optimum p^{*}.
2. Find the dual function $g(\lambda)$.
3. Find the dual optimum d^{*}. Conclude from the relation of p^{*} and d^{*} whether strong duality holds or not.

4 Support Vector Machines (Fall 2020 Final)

Recall that the maximum margin support vector machine problem is to find \vec{w}, b that solve the following problem:

$$
\begin{aligned}
\min _{\vec{w}, b} & \frac{1}{2}\|\vec{w}\|_{2}^{2} \\
\text { subject to } & y_{i}\left(\vec{w}^{\top} \vec{x}_{i}+b\right) \geq 1, \quad i=1, \ldots, n
\end{aligned}
$$

Here, the data points $\left(\vec{x}_{i}, y_{i}\right)$ with $\vec{x}_{i} \in \mathbb{R}^{k}, y_{i} \in\{+1,-1\}$ for $i=1, \ldots, n$ are given. Throughout the problem, assume that $\left(\vec{w}^{*}, b^{*}\right)$ is an optimal primal pair and λ_{i}^{*} for $i=1, \ldots, n$ are optimal dual variables, respectively. Answer true or false for the following questions, with justification:

1. Assume that $\left(\vec{w}^{*}, b^{*}\right)$ is an optimal primal pair and λ_{i}^{*} for $i=1, \ldots, n$ are optimal dual variables, respectively. Suppose you are told that $\lambda_{i}^{*}>0$ for some $i \in\{1, \ldots, n\}$. Then, $y_{i}\left(\vec{w}^{\top} \vec{x}_{i}+b^{*}\right)=1$.
2. The optimal \vec{w}^{*} is always dependent on every one of the data points, i.e. it is always the case that changing any one of the data points will change the optimal \vec{w}^{*}.
3. Assume that k is very large compared to n. Furthermore, assume that you have a black box that can easily compute the inner product between feature vectors, i.e. that computing $\vec{x}^{\top} \overrightarrow{\tilde{x}}$ for two feature vectors \vec{x} and $\overrightarrow{\tilde{x}}$ incurs a very small cost even though k is large. In order to classify a new feature vector $\vec{x}^{\dagger} \in \mathbb{R}^{k}$, it is more efficient to directly solve the primal problem and obtain \vec{w}^{*}, b^{*} than to solve the dual problem.
4. If the training data is not linearly separable, then strong duality does not hold.

5 Reformulating Convex Optimization Problems (Spring 2020, Spring 2023 Final)

1. Reformulate the following problem as an SOCP:

$$
\min _{\vec{x}} \max _{i=1,2, \ldots, m}\left\|A \vec{x}-B \vec{y}_{i}\right\|_{2} .
$$

2. Reformulate the following problem as a QP:

$$
\begin{aligned}
\min _{\vec{x} \in \mathbb{R}^{2}} & \vec{x}^{\top} A \vec{x} \\
\text { s.t. } & \vec{c}^{\top} \vec{x} \geq 1
\end{aligned}
$$

where $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$ and $\vec{c} \in \mathbb{R}^{2}$.
Note: A is not a positive semidefinite symmetric matrix.
3. Reformulate the following problem as a QP:

$$
\begin{aligned}
\min _{\vec{x} \in \mathbb{R}^{d}} & \frac{1}{2}\|\vec{x}\|^{2} \\
\text { s.t. } & \|A \vec{x}-\vec{y}\|_{\infty} \leq \epsilon,
\end{aligned}
$$

where $A \in \mathbb{R}^{n \times d}, \vec{y} \in \mathbb{R}^{n}$, and $\epsilon>0$.
4. Reformulate the following problem as a QP:

$$
\min _{\vec{x} \in \mathbb{R}^{d}}\left\{\frac{1}{2}\|\vec{x}\|^{2}+\lambda \sum_{i=1}^{n} \max \left\{0,\left|\vec{a}_{i}^{\top} \vec{x}-y_{i}\right|-\epsilon\right\}\right\},
$$

where $A \in \mathbb{R}^{n \times d}, \vec{y} \in \mathbb{R}^{n}, \epsilon>0$, and $\lambda>0$.
Hint: Introduce a new variable \vec{z}.

6 Properties of a Linear Program

Consider the following linear program

$$
\begin{array}{cl}
\min _{\vec{x} \in \mathbb{R}^{2}} & c_{1} x_{1}+c_{2} x_{2} \\
\text { s.t. } & x_{1}+x_{2}, \\
& x_{1}-x_{2} \leq 1, \\
& x_{2}-x_{1} \leq 1 .
\end{array}
$$

(a) Draw the constraint set of this optimization problem.
(b) Draw the level sets of the function $c_{1} x_{1}+c_{2} x_{2}=\{1,0,-1\}$ corresponding to the following values of c_{1} and c_{2} :
$-c_{1}=1, c_{2}=1 ;$
$-c_{1}=-1, c_{2}=1 ;$
$-c_{1}=0, c_{2}=-1$.
(c) Suppose $c_{1}=1, c_{2}=1$. Does the optimal solution exist? If so, is it unique?
(d) Suppose $c_{1}=-1, c_{2}=1$. Does the optimal solution exist? If so, is it unique?
(e) Suppose $c_{1}=0, c_{2}=-1$. Does the optimal solution exist? If so, is it unique?

7 KKT Conditions

Consider the problem:

$$
\begin{array}{cl}
\min _{x, y \in \mathbb{R}} & 2 x+y \\
\text { s.t. } & x^{2}+y^{2} \leq 4, \\
& x \geq 0, \\
& y \geq \frac{x}{2}-1 .
\end{array}
$$

1. Is the above problem a convex optimization problem?
2. Write the Lagrangian $L\left(x, y, \lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ associated to this problem.
3. Write the KKT conditions for this problem.
4. Does strong duality hold for this problem?
