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1 Convex and Non-convex Optimization Problems
Fix non-zero vectors u⃗, v⃗, w⃗ ∈ Rn, with n ≥ 2, fix α > 0, β ∈ R, and let 0⃗ ∈ Rn

denote the n-dimensional zero vector.
1. Is the following optimization problem convex or non-convex? If it is convex,

under what conditions do Slater’s condition hold? Justify.

min
X∈Rn×n

u⃗⊤Xv⃗,

s.t. ∥X∥2F ≤ α,

Xw⃗ = βw⃗.

2. Is the following optimization problem convex or non-convex? If it is convex,
under what conditions do Slater’s condition hold? Justify.

min
X∈Rn×n

u⃗⊤Xv⃗,

s.t. ∥X∥2F = α,

Xw⃗ = βw⃗.
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2 Gradient Descent
1. Let f : Rn → R be a twice-differentiable function that we are attempting to

minimize using Newton’s method. Suppose that at the kth iterate x⃗k ∈ Rn we
have ∇2f(x⃗k) = αkIn, where αk > 0 is some positive constant and In ∈ Rn×n is
the identity matrix. Write the Newton’s method step for x⃗k+1 in terms
of x⃗k, αk, and ∇f(x⃗k).

2. Now suppose we are trying to minimize the same function f via gradient
descent. Write the gradient descent step for x⃗k+1 in terms of x⃗k and
∇f(x⃗k), with some arbitrary step size ηk > 0 at time k. For what
value of ηk is the gradient descent update equation the same as the
Newton’s update equation from the last part?
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3 Duality (Fall 2022 Final)
Consider a convex function

f(x⃗) =
1

2
(x1 + 1)2 + x2

2, ∀x⃗ = (x1, x2) ∈ R2. (3.1)

Suppose that we wish to minimize f(x⃗) subject to the linear constraint x1 = 0.
1. Find the primal optimum p∗.

2. Find the dual function g(λ).

3. Find the dual optimum d∗. Conclude from the relation of p∗ and d∗ whether
strong duality holds or not.
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4 Support Vector Machines (Fall 2020 Final)
Recall that the maximum margin support vector machine problem is to find w⃗, b
that solve the following problem:

min
w⃗,b

1

2
∥w⃗∥22

subject to yi(w⃗
⊤x⃗i + b) ≥ 1, i = 1, . . . , n.

Here, the data points (x⃗i, yi) with x⃗i ∈ Rk, yi ∈ {+1,−1} for i = 1, . . . , n are given.
Throughout the problem, assume that (w⃗∗, b∗) is an optimal primal pair and λ∗

i for
i = 1, . . . , n are optimal dual variables, respectively. Answer true or false for the
following questions, with justification:

1. Assume that (w⃗∗, b∗) is an optimal primal pair and λ∗
i for i = 1, . . . , n are op-

timal dual variables, respectively. Suppose you are told that λ∗
i > 0 for some

i ∈ {1, . . . , n}. Then, yi(w⃗∗⊤ x⃗i + b∗) = 1.

2. The optimal w⃗∗ is always dependent on every one of the data points, i.e. it
is always the case that changing any one of the data points will change the
optimal w⃗∗.

3. Assume that k is very large compared to n. Furthermore, assume that you
have a black box that can easily compute the inner product between feature
vectors, i.e. that computing x⃗⊤⃗̃x for two feature vectors x⃗ and ⃗̃x incurs a very
small cost even though k is large. In order to classify a new feature vector
x⃗† ∈ Rk, it is more efficient to directly solve the primal problem and obtain
w⃗∗, b∗ than to solve the dual problem.

4. If the training data is not linearly separable, then strong duality does not hold.
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5 Reformulating Convex Optimization Problems (Spring
2020, Spring 2023 Final)

1. Reformulate the following problem as an SOCP:

min
x⃗

max
i=1,2,...,m

∥Ax⃗−By⃗i∥2.

2. Reformulate the following problem as a QP:

min
x⃗∈R2

x⃗⊤Ax⃗

s.t. c⃗⊤x⃗ ≥ 1

where A =

[
1 −1
0 1

]
and c⃗ ∈ R2.

Note: A is not a positive semidefinite symmetric matrix.

3. Reformulate the following problem as a QP:

min
x⃗∈Rd

1

2
∥x⃗∥2

s.t. ∥Ax⃗− y⃗∥∞ ≤ ϵ,

where A ∈ Rn×d, y⃗ ∈ Rn, and ϵ > 0.

4. Reformulate the following problem as a QP:

min
x⃗∈Rd

{
1

2
∥x⃗∥2 + λ

n∑
i=1

max{0, |⃗a⊤i x⃗− yi| − ϵ}

}
,

where A ∈ Rn×d, y⃗ ∈ Rn, ϵ > 0, and λ > 0.

Hint: Introduce a new variable z⃗.
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6 Properties of a Linear Program
Consider the following linear program

min
x⃗∈R2

c1x1 + c2x2

s.t. x1 + x2 ≤ 1,

x1 − x2 ≤ 1,

x2 − x1 ≤ 1.

(a) Draw the constraint set of this optimization problem.

(b) Draw the level sets of the function c1x1 + c2x2 = {1, 0,−1} corresponding to
the following values of c1 and c2:

– c1 = 1, c2 = 1;

– c1 = −1, c2 = 1;

– c1 = 0, c2 = −1.

(c) Suppose c1 = 1, c2 = 1. Does the optimal solution exist? If so, is it unique?

(d) Suppose c1 = −1, c2 = 1. Does the optimal solution exist? If so, is it unique?

(e) Suppose c1 = 0, c2 = −1. Does the optimal solution exist? If so, is it unique?
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7 KKT Conditions
Consider the problem:

min
x,y∈R

2x+ y

s.t. x2 + y2 ≤ 4,

x ≥ 0,

y ≥ x

2
− 1.

1. Is the above problem a convex optimization problem?

2. Write the Lagrangian L(x, y, λ1, λ2, λ3) associated to this problem.

3. Write the KKT conditions for this problem.

4. Does strong duality hold for this problem?
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