EE 127/227A Final Review Problems

EE 127/227AT: Optimization Models in Engineering Instructor: Profs. Gireeja Ranade, Venkat Anantharam Authors: Yigit Efe Erginbas, Kshitij Kulkarni, Chinmay Maheshwari, Aditya Ramabadran, Chih-Yuan Chiu

December 4, 2023

1 Convex and Non-convex Optimization Problems

Fix non-zero vectors $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, with $n \ge 2$, fix $\alpha > 0$, $\beta \in \mathbb{R}$, and let $\vec{0} \in \mathbb{R}^n$ denote the *n*-dimensional zero vector.

1. Is the following optimization problem convex or non-convex? If it is convex, under what conditions do Slater's condition hold? Justify.

$$\min_{X \in \mathbb{R}^{n \times n}} \quad \vec{u}^{\top} X \vec{v},$$

s.t.
$$\|X\|_F^2 \le \alpha,$$
$$X \vec{w} = \beta \vec{w}.$$

2. Is the following optimization problem convex or non-convex? If it is convex, under what conditions do Slater's condition hold? Justify.

$$\min_{X \in \mathbb{R}^{n \times n}} \quad \vec{u}^{\top} X \vec{v},$$

s.t.
$$\|X\|_F^2 = \alpha,$$

$$X \vec{w} = \beta \vec{w}.$$

2 Gradient Descent

- 1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a twice-differentiable function that we are attempting to minimize using Newton's method. Suppose that at the k^{th} iterate $\vec{x}_k \in \mathbb{R}^n$ we have $\nabla^2 f(\vec{x}_k) = \alpha_k I_n$, where $\alpha_k > 0$ is some positive constant and $I_n \in \mathbb{R}^{n \times n}$ is the identity matrix. Write the Newton's method step for \vec{x}_{k+1} in terms of \vec{x}_k , α_k , and $\nabla f(\vec{x}_k)$.
- 2. Now suppose we are trying to minimize the same function f via gradient descent. Write the gradient descent step for \vec{x}_{k+1} in terms of \vec{x}_k and $\nabla f(\vec{x}_k)$, with some arbitrary step size $\eta_k > 0$ at time k. For what value of η_k is the gradient descent update equation the same as the Newton's update equation from the last part?

3 Duality (Fall 2022 Final)

Consider a convex function

$$f(\vec{x}) = \frac{1}{2}(x_1 + 1)^2 + x_2^2, \qquad \forall \vec{x} = (x_1, x_2) \in \mathbb{R}^2.$$
(3.1)

Suppose that we wish to minimize $f(\vec{x})$ subject to the linear constraint $x_1 = 0$.

- 1. Find the primal optimum p^* .
- 2. Find the dual function $g(\lambda)$.
- 3. Find the dual optimum d^* . Conclude from the relation of p^* and d^* whether strong duality holds or not.

4 Support Vector Machines (Fall 2020 Final)

Recall that the maximum margin support vector machine problem is to find \vec{w} , b that solve the following problem:

$$\min_{\vec{w},b} \quad \frac{1}{2} \|\vec{w}\|_2^2$$

subject to $y_i(\vec{w}^\top \vec{x}_i + b) \ge 1, \quad i = 1, \dots, n.$

Here, the data points (\vec{x}_i, y_i) with $\vec{x}_i \in \mathbb{R}^k$, $y_i \in \{+1, -1\}$ for $i = 1, \ldots, n$ are given. Throughout the problem, assume that (\vec{w}^*, b^*) is an optimal primal pair and λ_i^* for $i = 1, \ldots, n$ are optimal dual variables, respectively. Answer true or false for the following questions, with justification:

- 1. Assume that (\vec{w}^*, b^*) is an optimal primal pair and λ_i^* for i = 1, ..., n are optimal dual variables, respectively. Suppose you are told that $\lambda_i^* > 0$ for some $i \in \{1, ..., n\}$. Then, $y_i(\vec{w}^{*^{\top}}\vec{x}_i + b^*) = 1$.
- 2. The optimal \vec{w}^* is always dependent on every one of the data points, i.e. it is always the case that changing any one of the data points will change the optimal \vec{w}^* .
- 3. Assume that k is very large compared to n. Furthermore, assume that you have a black box that can easily compute the inner product between feature vectors, i.e. that computing $\vec{x}^{\top}\vec{x}$ for two feature vectors \vec{x} and \vec{x} incurs a very small cost even though k is large. In order to classify a new feature vector $\vec{x}^{\dagger} \in \mathbb{R}^k$, it is more efficient to directly solve the primal problem and obtain \vec{w}^*, b^* than to solve the dual problem.
- 4. If the training data is not linearly separable, then strong duality does not hold.

5 Reformulating Convex Optimization Problems (Spring 2020, Spring 2023 Final)

1. Reformulate the following problem as an SOCP:

$$\min_{\vec{x}} \max_{i=1,2,\dots,m} \|A\vec{x} - B\vec{y}_i\|_2.$$

2. Reformulate the following problem as a QP:

$$\min_{\vec{x} \in \mathbb{R}^2} \quad \vec{x}^\top A \vec{x} \\ \text{s.t.} \quad \vec{c}^\top \vec{x} \ge 1$$

where $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$ and $\vec{c} \in \mathbb{R}^2$.

Note: A is not a positive semidefinite symmetric matrix.

3. Reformulate the following problem as a QP:

$$\min_{\vec{x} \in \mathbb{R}^d} \quad \frac{1}{2} \|\vec{x}\|^2$$

s.t.
$$\|A\vec{x} - \vec{y}\|_{\infty} \le \epsilon,$$

where $A \in \mathbb{R}^{n \times d}$, $\vec{y} \in \mathbb{R}^n$, and $\epsilon > 0$.

4. Reformulate the following problem as a QP:

$$\min_{\vec{x}\in\mathbb{R}^d} \left\{ \frac{1}{2} \|\vec{x}\|^2 + \lambda \sum_{i=1}^n \max\{0, |\vec{a}_i^\top \vec{x} - y_i| - \epsilon\} \right\},\$$

where $A \in \mathbb{R}^{n \times d}$, $\vec{y} \in \mathbb{R}^n$, $\epsilon > 0$, and $\lambda > 0$. Hint: Introduce a new variable \vec{z} .

6 Properties of a Linear Program

Consider the following linear program

$$\min_{\vec{x} \in \mathbb{R}^2} \quad c_1 x_1 + c_2 x_2 \\ \text{s.t.} \quad x_1 + x_2 \le 1, \\ x_1 - x_2 \le 1, \\ x_2 - x_1 \le 1.$$

- (a) Draw the constraint set of this optimization problem.
- (b) Draw the level sets of the function $c_1x_1 + c_2x_2 = \{1, 0, -1\}$ corresponding to the following values of c_1 and c_2 :

$$- c_1 = 1, c_2 = 1;$$

$$- c_1 = -1, c_2 = 1;$$

$$- c_1 = 0, c_2 = -1.$$

- (c) Suppose $c_1 = 1, c_2 = 1$. Does the optimal solution exist? If so, is it unique?
- (d) Suppose $c_1 = -1, c_2 = 1$. Does the optimal solution exist? If so, is it unique?
- (e) Suppose $c_1 = 0, c_2 = -1$. Does the optimal solution exist? If so, is it unique?

7 KKT Conditions

Consider the problem:

$$\min_{\substack{x,y \in \mathbb{R} \\ \text{s.t.}}} 2x + y$$

s.t. $x^2 + y^2 \le 4$,
 $x \ge 0$,
 $y \ge \frac{x}{2} - 1$.

- 1. Is the above problem a convex optimization problem?
- 2. Write the Lagrangian $L(x, y, \lambda_1, \lambda_2, \lambda_3)$ associated to this problem.
- 3. Write the KKT conditions for this problem.
- 4. Does strong duality hold for this problem?