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1 Convex and Non-convex Optimization Problems
Fix non-zero vectors u⃗, v⃗, w⃗ ∈ Rn, with n ≥ 2, fix α > 0, β ∈ R, and let 0⃗ ∈ Rn

denote the n-dimensional zero vector.
1. Is the following optimization problem convex or non-convex? If it is convex,

under what conditions do Slater’s condition hold? Justify.

min
X∈Rn×n

u⃗⊤Xv⃗,

s.t. ∥X∥2F ≤ α,

Xw⃗ = βw⃗.

2. Is the following optimization problem convex or non-convex? If it is convex,
under what conditions do Slater’s condition hold? Justify.

min
X∈Rn×n

u⃗⊤Xv⃗,

s.t. ∥X∥2F = α,

Xw⃗ = βw⃗.

Solution:
1. The given optimization problem is convex. First, the objective is a linear

function in the components of X. One way to see this is to observe that
u⃗⊤Xv⃗ =

∑n
i=1

∑n
j=1 uivjXij is linear in {Xij|i, j ∈ {1, · · · , n}}. Another way

is to observe that for any X1, X2 ∈ Rn×n and α1, α2 ∈ R, we have u⃗⊤(α1X1 +
α2X2)v⃗ = α1(u⃗

⊤X1v⃗) + α2(u⃗
⊤X2v⃗).

Second, we claim that the inequality constraint defines a convex set. One
way to see this is to observe that the given inequality constraint is equivalent
to

∑n
i=1

∑n
j=1X

2
ij ≤ α, which is the zero sub-level set of the function f :

Rn×n → R, given by f(X) := −α +
∑n

i=1

∑n
j=1X

2
ij for each X ∈ Rn×n. Since

f is a convex quadratic function in the components of X, we conclude that
the inequality constraint characterizes a convex set.

Third, note that the equality constraint is linear in terms of the com-
ponents of X. Indeed, these constraints are:

n∑
j=1

wjXij = βwi, for each i ∈ {1, · · · , n}.

Thus, the equality constraint characterizes a convex set (in fact, it is either
the empty set, a single point, or an affine subspace of dimension at least 1).

Finally, we claim that Slater’s condition holds if and only if β2 < α. To
see this, first note that since we are given that w⃗ ̸= 0⃗, the constraint Xw⃗ = βw⃗
requires β to be an eigenvalue of X with corresponding eigenvector w⃗. We now
claim that, if |β| <

√
α, the following choice of X is a strictly feasible point

that allows Slater’s condition to be satisfied:

X =
β

∥w⃗∥22
w⃗w⃗⊤.
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To see this, note that:

Xw⃗ =
β

∥w⃗∥22
w⃗(w⃗⊤w⃗) = βw⃗,

as desired, and:

∥X∥2F = tr(X⊤X) = tr
(

β2

∥w⃗∥42
w⃗(w⃗⊤w⃗)w⃗⊤

)
=

β2

∥w⃗∥22
tr(w⃗w⃗⊤) = β2 < α.

as desired, where the fact that ∥X∥2F = tr(X⊤X) follows from Proposition 38
in Section 2.7 of the current version of the course reader, and the final equality
follows by applying the cyclic property of the trace.

Conversely, we claim that if β2 ≥ α, then Slater’s condition is not
satisfied. This is because, if X ∈ Rn×n were to satisfy Xw⃗ = βw⃗, then we
would have:

∥X∥F ≥ ∥X∥2 ≥
∥Xw⃗∥2
∥w⃗∥2

= |β| ≥
√
α,

so ∥X∥2F ≥ α. Thus, there exists no matrix X ∈ Rn×n satisfying ∥X∥2F < α
and Xw⃗ = βw⃗ at the same time, i.e., the constraint set does not contain a
strictly feasible point. As a result, Slater’s condition is not satisfied.

2. The constraint set corresponding to the equality ∥X∥2F = α is non-convex. To
see this, let X1 ∈ Rn×n the matrix whose (1, 1) component equals

√
α and

whose remaining components are all 0, and let X2 ∈ Rn×n the matrix whose
(2, 2) component equals

√
α and whose remaining components are all 0. Then

∥X1∥2F = ∥X2∥2F = α, but:∥∥∥∥12X1 +
1

2
X2

∥∥∥∥2

F

=
1

2
α ̸= α.

In short, X1 and X2 are both contained in the set {X ∈ Rn×n|∥X∥2F = α}, but
1
2
X1 +

1
2
X2 is not, despite being a convex combination of X1 and X2. Thus,

the set {X ∈ Rn×n|∥X∥2F = α} is not convex.
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2 Gradient Descent
1. Let f : Rn → R be a twice-differentiable function that we are attempting to

minimize using Newton’s method. Suppose that at the kth iterate x⃗k ∈ Rn we
have ∇2f(x⃗k) = αkIn, where αk > 0 is some positive constant and In ∈ Rn×n is
the identity matrix. Write the Newton’s method step for x⃗k+1 in terms
of x⃗k, αk, and ∇f(x⃗k).

2. Now suppose we are trying to minimize the same function f via gradient
descent. Write the gradient descent step for x⃗k+1 in terms of x⃗k and
∇f(x⃗k), with some arbitrary step size ηk > 0 at time k. For what
value of ηk is the gradient descent update equation the same as the
Newton’s update equation from the last part?

Solution:
1. Since [αkIn]

−1 = 1
αk
In, the Newton’s method step is

x⃗k+1 = x⃗k −
1

αk

∇f(x⃗k). (2.1)

2. The gradient descent step is

x⃗k+1 = x⃗k − ηk∇f(x⃗k). (2.2)

The two descent steps are equivalent when ηk =
1
αk

.
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3 Duality (Fall 2022 Final)
Consider a convex function

f(x⃗) =
1

2
(x1 + 1)2 + x2

2, ∀x⃗ = (x1, x2) ∈ R2. (3.1)

Suppose that we wish to minimize f(x⃗) subject to the linear constraint x1 = 0.
1. Find the primal optimum p∗.

2. Find the dual function g(λ).

3. Find the dual optimum d∗. Conclude from the relation of p∗ and d∗ whether
strong duality holds or not.

Solution:

1. The optimum occurs at x∗
1 = 0 and x∗

2 = 0. We have p∗ = 1
2
.

2. The dual function takes the form:

g(ν) = inf
x⃗∈R2

{
1

2
(x1 + 1)2 + x2

2 + νx1

}
. (3.2)

Since the above is a minimization problem and the objective function is convex
in x⃗, we can find the minimizer x⃗∗(ν) for each fixed ν ∈ R by setting the
gradient in x⃗ of the function 1

2
(x1 + 1)2 + x2

2 + νx1 to 0.
Setting the gradient w.r.t. x1 equal to 0, we get x∗

1(ν) = −ν − 1.
Setting the gradient w.r.t. x2 equal to 0, we get x∗

2(ν) = 0.
Plugging x∗

1(ν) and x∗
2(ν) back into the function 1

2
(x1 + 1)2 + x2

2 + νx1, we
obtain the desired dual function

g(ν) = −1

2
ν2 − ν. (3.3)

3. To find d∗, we need to solve the dual problem

d∗ = sup
ν∈R

g(ν) (3.4)

= sup
ν∈R

−1

2
ν2 − ν. (3.5)

Since the above is a maximization problem and the objective function is con-
cave in ν, we can find ν∗ by setting the gradient in ν of −1

2
ν2 − ν to 0.

This gives ν∗ = −1. So we know, the dual optimum d∗ = g(ν∗) = 1
2
. Since

p∗ = d∗ = 1
2
, strong duality holds.
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4 Support Vector Machines (Fall 2020 Final)
Recall that the maximum margin support vector machine problem is to find w⃗, b
that solve the following problem:

min
w⃗,b

1

2
∥w⃗∥22

subject to yi(w⃗
⊤x⃗i + b) ≥ 1, i = 1, . . . , n.

Here, the data points (x⃗i, yi) with x⃗i ∈ Rk, yi ∈ {+1,−1} for i = 1, . . . , n are given.
Throughout the problem, assume that (w⃗∗, b∗) is an optimal primal pair and λ∗

i for
i = 1, . . . , n are optimal dual variables, respectively. Answer true or false for the
following questions, with justification:

1. Assume that (w⃗∗, b∗) is an optimal primal pair and λ∗
i for i = 1, . . . , n are

optimal dual variables, respectively. Suppose you are told that λ∗
i > 0 for

some i ∈ {1, . . . , n}. Then, yi(w⃗∗⊤ x⃗i + b∗) = 1.
Solution: True. This follows from complementary slackness, which tells us that
(yi(w⃗

∗⊤ x⃗i + b∗)− 1)λ∗
i = 0 for all i = 1, . . . , n.

2. The optimal w⃗∗ is always dependent on the location of every one of the data
points, i.e. it is always the case that changing the location of any one of the
data points will change the optimal w⃗∗.
Solution: False. There are examples where there is a data point (x⃗i, yi) such
that yi(w⃗

∗⊤ x⃗i + b∗) > 1. In this case, for all sufficiently small changes of the
location x⃗i of the data point (x⃗i, yi) to, say, ⃗̃xi, leaving ỹi = yi, we will still
have ỹi(w⃗

∗⊤⃗̃xi + b∗) ≥ 1, and so the KKT conditions for the maximum margin
support vector machine problem will continue to be solved by the same choice
of λ∗

i and (w⃗∗, b∗) even when the data point (x⃗i, yi) is replaced by (⃗̃xi, ỹi).
Thus, in such cases the optimal w⃗∗ does not depend on the location of the
data point (x⃗i, yi).

3. Assume that k is very large compared to n. Furthermore, assume that you
have a black box that can easily compute the inner product between feature
vectors, i.e. that computing x⃗⊤⃗̃x for two feature vectors x⃗ and ⃗̃x incurs a very
small cost even though k is large. In order to classify a new feature vector
x⃗† ∈ Rk, it is more efficient to directly solve the primal problem and obtain
w⃗∗, b∗ than to solve the dual problem.
Solution: False. Notice that if we solve the dual problem we will get a dual opti-
mal λ∗

i for i = 1, . . . , n, of which there are very few compared to k. This means
that when we classify x⃗†, instead of computing w⃗⊤x⃗† + b, which may require
cost require a cost that is determined by k, we can compute

∑n
i=1 yiλ

∗
i x⃗

⊤
i x⃗

†+b,
which, since computing x⃗⊤

i x⃗
† incurs only a fixed cost, will result in an overall

cost that is determined by n.

4. If the training data is not linearly separable, then strong duality does not hold.
Solution: False. While it is true that we cannot find a separating hyperplane,
it is not true that strong duality does not hold. In fact, the primal optimal
value will be ∞ and the dual optimal value will be ∞. The primal optimal
value in this cased will be ∞ because the primal problem is not feasible. The
dual optimal value will be ∞ because, if the data is not linearly separable, we
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can find a convex combination of the x⃗i that are classified as 1 which equals
a convex combination of the x⃗i which are classified as −1. This means we
can find nonnegative λi, i = 1, . . . , n, not all zero, such that we have both∑n

i=1 λiyi = 0 and
∑n

i=1 λiyix⃗i = 0. Now we can scale the λi’s arbitrarily large
to push the objective of the dual to ∞.
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5 Reformulating Convex Optimization Problems (Spring
2020, Spring 2023 Final)

1. Reformulate the following problem as an SOCP:

min
x⃗

max
i=1,2,...,m

∥Ax⃗−By⃗i∥2.

Solution: Introducing a slack variable t ∈ R, we can rewrite the problem as

min
x⃗,t

t

s.t. ∥Ax⃗−By⃗i∥2 ≤ t, i = 1, 2, . . . ,m.

This is an SOCP in standard form.

2. Reformulate the following problem as a QP:

min
x⃗∈R2

x⃗⊤Ax⃗

s.t. c⃗⊤x⃗ ≥ 1

where A =

[
1 −1
0 1

]
and c⃗ ∈ R2.

Note: A is not a positive semidefinite symmetric matrix.

Solution: We can equivalently write the objective function as x⃗⊤Ax⃗ = x⃗⊤Bx⃗
for

B =
1

2
(A+ A⊤) =

[
1 −1/2

−1/2 1

]
.

Because the eigenvalues of B are {3/2, 1/2}, B is PD. Therefore the following
problem, which is equivalent to the given problem, is a QP:

min
x⃗∈R2

x⃗⊤Bx⃗

s.t. c⃗⊤x⃗ ≥ 1.

3. Reformulate the following problem as a QP:

min
x⃗∈Rd

1

2
∥x⃗∥2

s.t. ∥Ax⃗− y⃗∥∞ ≤ ϵ,

where A ∈ Rn×d, y⃗ ∈ Rn, and ϵ > 0.

Solution: This problem can be written as the QP:

min
x⃗∈Rd

1

2
∥x⃗∥2

s.t. Ax⃗− y⃗ ≤ ϵ⃗1,

Ax⃗− y⃗ ≥ −ϵ⃗1,

where the vector inequalities are meant to hold coordinatewise.
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4. Reformulate the following problem as a QP:

min
x⃗∈Rd

{
1

2
∥x⃗∥2 + λ

n∑
i=1

max{0, |⃗a⊤i x⃗− yi| − ϵ}

}
,

where A ∈ Rn×d, y⃗ ∈ Rn, ϵ > 0, and λ > 0.

Hint: Introduce a new variable z⃗.

Solution:

Note that

max{0, |⃗a⊤i x⃗− yi| − ϵ} = max{0, a⃗⊤i x⃗− yi − ϵ,−a⃗⊤i x⃗+ yi − ϵ}.

Therefore, the optimization problem can be equivalently written as the QP:

min
x⃗∈Rd

1

2
∥x⃗∥2 + λz⃗⊤1⃗

s.t. z⃗ ≥ 0⃗,

z⃗ ≥ Ax⃗− y⃗ − ϵ⃗1,

z⃗ ≥ −Ax⃗+ y⃗ − ϵ⃗1,

where the vector inequalities are meant to hold coordinatewise.
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6 Properties of a Linear Program
Consider the following linear program

min
x⃗∈R2

c1x1 + c2x2

s.t. x1 + x2 ≤ 1,

x1 − x2 ≤ 1,

x2 − x1 ≤ 1.

(a) Draw the constraint set of this optimization problem.

(b) Draw the level sets of the function c1x1 + c2x2 = {1, 0,−1} corresponding to
the following values of c1 and c2:

– c1 = 1, c2 = 1;

– c1 = −1, c2 = 1;

– c1 = 0, c2 = −1.

(c) Suppose c1 = 1, c2 = 1. Does the optimal solution exist? If so, is it unique?

(d) Suppose c1 = −1, c2 = 1. Does the optimal solution exist? If so, is it unique?

(e) Suppose c1 = 0, c2 = −1. Does the optimal solution exist? If so, is it unique?
Solution:

(a) The feasible region is shown in Figure 1.

Figure 1: The feasible region is the darkest region in the figure above

(b) (1) The level sets of the function x1 + x2 ∈ {−1, 0, 1} is shown in Figure 2.

(2) The level sets of the function x1 − x2 ∈ {−1, 0, 1} is shown in Figure 3.

(3) The level sets of the function −x2 ∈ {−1, 0, 1} is shown in Figure 4.
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Figure 2: The level sets of the function x1+x2 ∈ {−1, 0, 1}. The purple line denotes
the set x1+x2 = 1. The black line denotes the set x1+x2 = 0. The red line denotes
the set x1 + x2 = −1.

Figure 3: The level sets of the function x1−x2 ∈ {−1, 0, 1}. The purple line denotes
the set x1−x2 = 1. The black line denotes the set x1−x2 = 0. The red line denotes
the set x1 − x2 = −1.

Figure 4: The level sets of the function −x2 ∈ {−1, 0, 1}. The purple line denotes
the set −x2 = 1. The black line denotes the set x2 = 0. The red line denotes the
set x2 = 1.

11



(c) If c1 = c2 = 1 then the optimal solution does not exist. This is because for
any ϵ > 0, (−ϵ,−ϵ) is a feasible solution. The objective value at this point is
−2ϵ. One can keep on increasing ϵ to get lower values of the objective.

(d) If c1 = −c2 = −1 then an optimal solution exists. From the constraints we
see that −1 ≤ c1x1 + c2x2 ≤ 1. For any ϵ > 0, the solution (1 − ϵ,−ϵ) is an
optimal solution where the objective takes on value equal to the lower bound
of −1. Thus, there are infinitely many optimal solutions to this problem.

(e) If c1 = 0, c2 = −1 then an optimal solution exists. The constraints x1+x2 ≤ 1
and x1 − x2 ≥ −1 guarantee that the objective is greater than −1. The only
feasible solution that achieves the objective value of −1 is (0, 1). This can be
easily observed from Figure 4.
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7 KKT Conditions
Consider the problem:

min
x,y∈R

2x+ y

s.t. x2 + y2 ≤ 4,

x ≥ 0,

y ≥ x

2
− 1.

1. Is the above problem a convex optimization problem?

2. Write the Lagrangian L(x, y, λ1, λ2, λ3) associated to this problem.

3. Write the KKT conditions for this problem.

4. Does strong duality hold for this problem?

Solution:
1. Yes. The objective function is linear in (x, y) ∈ R2, and the constraint can be

written as f1(x, y) ≤ 0, f2(x, y) ≤ 0, f3(x, y) ≤ 0, where f1, f2, f3 : R2 → R are
convex functions defined by:

f1(x, y) := x2 + y2 − 4,

f2(x, y) := −x,

f3(x, y) :=
x

2
− y − 1.

2. The Lagrangian L : R5 → R for this problem is given by:

L(x, y, λ1, λ2, λ3) = 2x+ y + λ1(x
2 + y2 − 4) + λ2(−x) + λ3

(
1

2
x− y − 1

)
.

for each x, y, λ1, λ2, λ3 ∈ R.

3. The KKT conditions for this optimization problem are:

• (Primal feasibility) x2 + y2 ≤ 4, x ≥ 0, y ≥ x
2
− 1.

• (Dual feasibility) λ1, λ2, λ3 ≥ 0.

• (Complementary Slackness) λ1(x
2 + y2 − 4) = 0, λ2(−x) = 0, λ3

(
x
2
−

y − 1
)
= 0.

• (Stationarity)

0⃗ = ∇(x,y)L(x, y, λ1, λ2, λ3) =

[
2 + 2λ1x− λ2 +

1
2
λ3

1 + 2λ1y − λ3

]
.

4. Yes. There exists a strictly feasible point given by (x, y) = (1, 0), so Slater’s
condition implies that strong duality holds.
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