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Problem (“Convexity”, Spring 2023 Midterm)
(a) Let f : R → R be a convex function. Fix a, b ∈ R. Prove that for any x ∈ [a, b]:

f(x) ≤ b− x

b− a
f(a) +

x− a

b− a
f(b).

This problem is from [Boyd and Vandenberghe, Problem 1 a].

Solution: Define α = b−x
b−a

. Note that α ∈ [0, 1] and it holds that

1− α =
x− a

b− a
.

Next, note that

aα + b(1− α) = a · b− x

b− a
+ b · x− a

b− a
= x.

Finally, using the definition of convexity of a function f(·) it holds that

f(x) = f(aα + b(1− α)) ≤ αf(a) + (1− α)f(b)

=
b− x

b− a
f(a) +

x− a

b− a
f(b).

(b) Let n be a positive integer. The probability simplex on Rn, denoted Pn, is the
set

Pn =

{
x⃗ ∈ Rn|xi ≥ 0 ∀i,

n∑
i=1

xi = 1

}
where x⃗ =

x1
...
xn

 . (0.1)

Is Pn convex? If yes, prove it. If no, justify your answer using an example.

Solution: Yes, Pn is convex. Let x⃗, y⃗ ∈ Pn let θ ∈ [0, 1], and define z⃗ =
θx⃗+ (1− θ)y⃗. We show that z⃗ ∈ Pn. Indeed,

zi = θ︸︷︷︸
≥0

xi︸︷︷︸
≥0

+(1− θ)︸ ︷︷ ︸
≥0

yi︸︷︷︸
≥0
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≥ 0.
n∑

i=1

zi =
n∑

i=1

(θxi + (1− θ)yi)

=
n∑

i=1

θxi +
n∑

i=1

(1− θ)yi

= θ

n∑
i=1

xi︸ ︷︷ ︸
=1

+(1− θ)
n∑

i=1

yi︸ ︷︷ ︸
=1

= θ + (1− θ) = 1.

Thus z⃗ ∈ Pn so Pn is convex.
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Problem (“Shift Matrix”, Spring 2023 Midterm)
Let V ∈ Rn×n be a square orthonormal matrix, i.e., its columns are orthogonal and
have norm 1:

V =

 ↑ ↑ . . . ↑ ↑
v⃗1 v⃗2 . . . v⃗n−1 v⃗n
↓ ↓ . . . ↓ ↓

 . (0.2)

Now, we define the shifted matrix W ∈ Rn×n, which is composed of the columns of
V shifted to the left by 1 index and padded by a zero vector:

W =

 ↑ ↑ . . . ↑ ↑
v⃗2 v⃗3 . . . v⃗n 0⃗
↓ ↓ . . . ↓ ↓

 . (0.3)

(a) What is rank(V )? What about rank(W )? You do not need to justify your
answers.

Solution: V is orthogonal, so it has full column rank. Therefore rank(V ) = n.
Since {v⃗1, . . . , v⃗n} is a set of n linearly independent vectors, {v⃗2, . . . , v⃗n} is a
set of n − 1 linearly independent vectors. 0⃗ is linearly dependent to all other
vectors, so there are just n− 1 linearly independent columns of W . Therefore
rank(W ) = n− 1.

(b) Find a basis for the null space of V − W and compute rank(V − W ). Show
your work.

Solution: Suppose x⃗ ∈ N (V −W ). Then,

0⃗ = (V −W )x⃗

=⇒ 0⃗ =

[
n−1∑
i=1

xi(v⃗i − v⃗i+1)

]
+ xnv⃗n

=⇒ 0⃗ = x1v⃗1 +

[
n−1∑
i=1

(xi+1 − xi)v⃗i+1

]

Since vi are all linearly independent, this implies that xn = . . . = x1 = 0,
which means that the null space is trivial. By Rank-Nullity Theorem, this
means that rank(V −W ) = n− dimN (V −W ) = n
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Problem (“Singular value decomposition”, Spring 2019
Midterm 1)
(13 points) The compact form of the singular value decomposition of a matrix A ∈
R3×3 is given as

A =

2
3

1√
2

2
3

− 1√
2

1
3

0

[3 0
0 2

][ 1√
3

1√
3

− 1√
3

1√
6

1√
6

− 2√
6

]

(a) (2 points) What is the rank of A? Justify.

(b) (3 points) What is the dimension of the column space (range) of A? Write a
basis for the column space (range) of A.

(c) (4 points) What is the dimension of the null space of A⊤? Write a basis for
the null space of A⊤.

(d) (4 points) Let B2 denote the unit-norm ball in ℓ2 norm: B2 := {z⃗ ∈ R3 :
∥z⃗∥2 ≤ 1}. Compute the minimum value of x⃗⊤Ay⃗, where x⃗ and y⃗ are two
vectors in B2; that is, find minx⃗,y⃗∈B2 x⃗

⊤Ay⃗.

Solution: For convenience, define Ur ∈ R3×2, Σr ∈ R2×2, and Vr ∈ R2×3 by:

Ur :=

2
3

1√
2

2
3

− 1√
2

1
3

0

 ,

Σr :=

[
3 0
0 2

]
,

Vr :=


1√
3

1√
6

1√
3

1√
6

− 1√
3

− 2√
6

 .

Then A = UrΣrV
⊤
r .

(a) A has two singular values, so rank(A) = 2.

(b) From (a), dim(R(A)) = 2. Since A = UrΣrV
⊤
r is a compact SVD of A, a basis

for R(A) is given by the set of columns of Ur, i.e.,:
2

3
2
3
1
3

 ,

 1√
2

− 1√
2

0

 .

(c) By the Fundamental Theorem of Linear Algebra, N(A⊤) = R(A)⊥. Since
R(A) ⊂ R3, with dim(R(A)) = 2, we have:

dim(N(A⊤)) = dim(R(A)⊥) = dim(R3)− dim(R(A)) = 3− 2 = 1

Let v⃗ := [v1 v2 v3]
⊤ ∈ R3 be given such that ∥v⃗∥2 = 1 and N(A⊤) = span({v⃗}).

Then v⃗ is orthogonal to the columns of Ur, which imply:

2v1 + 2v2 + v3 = 0,
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v1 − v2 = 0.

Thus, the following is a possible choice for v⃗ is: v⃗ = ( 1√
6
, 1√

6
,− 4√

6
).

(d) Note that if x⃗⋆, y⃗⋆ ∈ B2 × B2 is a minimizer of the expression x⃗⊤Ay⃗, then
(−x⃗⋆, y⃗⋆) ∈ B2 × B2 is a maximizer of the same expression. Thus:

min
x⃗,y⃗∈B2

x⃗⊤Ay⃗ = − max
x⃗,y⃗∈B2

x⃗⊤Ay⃗.

Applying the Cauchy-Schwarz inequality and the definition of the spectral
norm of A, we obtain that for any x⃗1, y⃗1 ∈ B2:

min
x⃗,y⃗∈B2

x⃗⊤Ay⃗ = − max
x⃗,y⃗∈B2

x⃗⊤Ay⃗

≥ −∥x⃗1∥2 · ∥Ay⃗1∥2
≥ −∥x⃗1∥2 · ∥A∥2 · ∥y⃗1∥2
≥ −∥A∥2.

We claim that equality can be obtained by a specific value of x⃗ ∈ B2 and
y⃗ ∈ B2. In particular, given orthogonal matrices U, V ∈ R3×3 and a diagonal
matrix Σ ∈ R3×3 such that A = UΣV ⊤ forms an SVD for A, we have x⃗⊤Ay⃗ =
x⃗⊤UΣV ⊤y⃗. Since ∥A∥ is the (1, 1)-entry of Σ, the equality x⃗⊤UΣV ⊤y⃗ =
∥A∥ would hold if x⃗⊤U = (1, 0, 0)⊤ and V ⊤y⃗ = (1, 0, 0), which is equivalent
to requiring x⃗ and y⃗ to be the first column of U and the first column of
V , respectively (i.e., the left singular vector and the right singular vector
corresponding to the maximum singular value of A, respectively). We conclude
that:

min
x⃗,y⃗∈B2

x⃗⊤Ay⃗ = −∥A∥2 = −3.
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Problem (“All I need is Q”, Spring 2020 Midterm)
(22 points) Consider a partially known matrix A ∈ R3×2, given by

A =

? 1
? 1
? 1


where question marks denote unknown entries of A. We can write the compact QR
decomposition of A in terms of Q1 ∈ R3×2 and R1 ∈ R2×2 as

A = Q1R1 =

1 q12
0 q22
0 q23

[? r12
0 r22

]
(0.4)

for some unknown entry ‘?’ and entries r12, r22, q12, q22, and q23, which you will
calculate below. Remember that the columns of Q1 are orthonormal. Note that
the ‘?’ entries of A and R1 are unknown and will remain unknown; you are NOT
required to compute them.

(a) (5 points) Suppose r22 > 0. Compute r12, r22, q12, q22, and q23. Show all
your work.

(b) (12 points) Suppose we can write the full QR decomposition of A as

A = QR =
[
Q1 Q2

] [ R1

0⃗1×2

]
, (0.5)

where Q1 and R1 are as defined in Equation (0.4). Consider the least-squares
problem:

p⋆ = min
x⃗∈R2

∥Ax⃗− b⃗∥22

for A given in Equation (0.4) and some b⃗ ∈ R3. Consider the following two
ways of rewriting this least squares problem in terms of Q1, Q2, and R1:

Strategy 1:

∥⃗b− Ax⃗∥22
(I)
= ∥Q⊤b⃗−Q⊤Ax⃗∥22
= ∥Q⊤

1 b⃗−R1x⃗∥22 + ∥Q⊤
2 b⃗∥22.

Strategy 2:

∥⃗b− Ax⃗∥22 = ∥⃗b−Q1R1x⃗∥22
(II)
= ∥Q⃗⊤

1 b−Q⊤
1 Q1R1x⃗∥22

(III)
= ∥Q⃗⊤

1 b−R1x⃗∥22

Determine whether the following labeled steps in the reformulations
above are correct or incorrect and justify your answer. When eval-
uating the correctness of an equality, consider only that specific equality’s
correctness—i.e., ignore all earlier steps.
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(i) Equality (I): ∥⃗b− Ax⃗∥22
(I)
= ∥Q⊤b⃗−Q⊤Ax⃗∥22.

(ii) Equality (II): ∥⃗b−Q1R1x⃗∥22
(II)
= ∥Q⃗⊤

1 b−Q⊤
1 Q1R1x⃗∥22.

(iii) Equality (III): ∥Q⃗⊤
1 b−Q⊤

1 Q1R1x⃗∥22
(III)
= ∥Q⃗⊤

1 b−R1x⃗∥22.

(c) (5 points) Now consider a different matrix A = QR, unrelated to the matrix
A in previous parts. Here, let

Q =

1 0 0
0 0 1
0 1 0

 ,

R =

[
R1

0⃗1×2

]
where R ∈ R3×2 and R1 ∈ R2×2 is a completely unknown invertible upper
triangular matrix. Let

b⃗ =

12
3

 .

Again consider the least squares optimization problem:

p⋆ = min
x⃗∈R2

∥Ax⃗− b⃗∥22.

Find the optimal value p⋆. Your answer should be a real number; it should
NOT be an expression involving A,Q,R,R1, or b⃗.

Solution:
(a) Applying the rules of matrix-vector multiplication to (0.4), we obtain (specif-

ically, we focus on the second column of A):

1 = r12 + r22q12,

1 = q22r22,

1 = q23r22.

Since the columns of Q1 form an orthonormal set, we also have:

q12 = 0,

q212 + q222 + q223 = 1.

Thus, we obtain r12 = 1. Rearranging the other equalities, we have:

q22 =
1

r22
,

q23 =
1

r22
,

q222 + q223 = 1,

from which we obtain r22 =
√
2, and q22 = q23 = 1√

2
. To summarize,

(r12, r22, q12, q22, q23) =
(
1,
√
2, 0, 1√

2
, 1√

2

)
.
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(b) (i) is true because Q⊤ is an orthogonal matrix, and is thus norm-preserving.
(ii) is in general false, since Q1 is not an orthogonal matrix (it is not even
square). As an example, consider the scenario where x⃗ = (0, 0) ∈ R2, in which
case the values:

∥⃗b−Q1R1x⃗∥22 = ∥⃗b∥22 = 12 + 22 + 32 = 14

and:

∥Q⊤
1 b⃗−Q⊤

1 Q1R1x⃗∥22 = ∥Q⊤
1 b⃗∥22 = 12 +

22

2
+

32

2
=

15

2

are not equal. (iii) is true because the columns of Q1 form an orthonormal set,
which implies Q⊤

1 Q1 = I2×2, where I2×2 denotes the 2× 2 identity matrix.

(c) From “Strategy 1” in part (b) of this question, we obtain the following lower
bound, which is independent of the choice of x⃗:

∥⃗b− Ax⃗∥22 = ∥Q⊤
1 b⃗−R1x⃗∥22 + ∥Q⊤

2 b⃗∥22
≥ ∥Q⊤

2 b⃗∥22.

Moreover, equality is attained at (and only at) the vector x⃗⋆ ∈ R3 satisfying
Q⊤

1 b⃗ − R1x⃗, i.e., at x⃗⋆ = R−1
1 Q⊤

1 b⃗. Thus, we have p⋆ = ∥Q⊤
2 b⃗∥22. For this

problem, since R1 ∈ R2×2, we have Q1 ∈ R3×2, so Q2 is the third column of
Q, i.e., Q2 = (0, 1, 0) ∈ R3. Thus:

p⋆ = ∥Q⊤
2 b⃗∥22

=

∥∥∥∥∥∥[0 1 0
] 12

3

∥∥∥∥∥∥
2

2

= 4.
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Problem (“Vector Calculus”, Spring 2023)
1. Let A ∈ Rn×n be an n × n symmetric matrix. Compute the gradient with

respect to x⃗ of the function f : Rn \ {⃗0} → R given by:

f(x⃗)
.
=

x⃗⊤Ax⃗

x⃗⊤x⃗
. (0.6)

Hint: Recall the quotient rule for finding the gradient of h(x⃗) = n(x⃗)
d(x⃗)

where n
and d are scalar-valued functions:

∇h(x⃗) =
d(x⃗)∇n(x⃗)− n(x⃗)∇d(x⃗)

(d(x⃗))2
. (0.7)

Solution: Define n(x⃗) = x⃗⊤Ax⃗ and d(x⃗) = x⃗⊤x⃗. The gradients of these
functions are

∇n(x⃗) = (A+ A⊤)x⃗ = 2Ax⃗ (0.8)
∇d(x⃗) = 2x⃗. (0.9)

Then f(x⃗) = n(x⃗)
d(x⃗)

, so we have

∇f(x⃗) =
d(x⃗)∇n(x⃗)− n(x⃗)∇d(x⃗)

(d(x⃗))2

=
[x⃗⊤x⃗][2Ax⃗]− [x⃗⊤Ax⃗][2x⃗]

(x⃗⊤x⃗)2

= 2
Ax⃗x⃗⊤x⃗− x⃗x⃗⊤Ax⃗

(x⃗⊤x⃗)2

=
2

x⃗⊤x⃗

(
A− x⃗⊤Ax⃗

x⃗⊤x⃗
I

)
x⃗.

2. Let u⃗ ∈ Rn. Compute the Jacobian with respect to x⃗ of the function g⃗ : Rn →
Rn given by

g⃗(x⃗)
.
= x⃗(x⃗⊤u⃗). (0.10)

Solution:

Define h(x⃗) = u⃗⊤x⃗. Then ∂h
∂xi

(x⃗) = ui. Also, define gi(x⃗) = h(x⃗)xi and we can
compute the partial derivatives as:

∂gi
∂xi

(x⃗) = h(x⃗) + xi
∂h

∂xi

(x⃗) = u⃗⊤x⃗+ uixi (0.11)

∂gi
∂xj

(x⃗) = xi
∂h

∂xj

(x⃗) = xiuj. (0.12)

If we stack these partial derivatives in a Jacobian matrix it follows that:

Dg⃗(x⃗) = x⃗u⃗⊤ + (u⃗⊤x⃗)I. (0.13)
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Problem (“Low-rank Matrix Completion”, Spring 2023)
Consider a matrix A ∈ Rm×n. If some entries are corrupted, one principled way
to identify A is to find the matrix B ∈ Rm×n of minimal rank that agrees with A
on all known entries. This can be formulated as an optimization problem whose
objective function is rank(B). Because the rank(·) function is not continuous, we use
the intuition that a low-rank matrix will only have a few nonzero singular values,
and instead use the sum-of-singular-values function as the objective:

f(B)
.
=

rank(B)∑
i=1

σi{B} (0.14)

where σi{B} is the ith largest singular value of B. In this problem we will explore
some properties of f .

(a) Prove that
f(B) ≤ max

C∈Rm×n

∥C∥2≤1

Tr
(
C⊤B

)
. (0.15)

Hint. Expand B into its SVD. Try to find a D ∈ Rm×n such that ∥D∥2 = 1
and Tr

(
D⊤B

)
= f(B).

Hint. You may use the cyclic property of traces without proof. If XY Z and
ZXY are valid matrix products then Tr (XY Z) = Tr (ZXY ).

Solution:

Let r .
= rank(B). Let B = UrΣrV

⊤
r be the compact SVD of B. Let D = UrV

⊤
r .

Note that ∥D∥2 = 1. This is because: (i) the SVD of D is expressed as
D = UrIr×rV

⊤
r where Ir×r is an identity matrix and (ii) the 2-norm of a

matrix is defined to be maximum singular value of that matrix.

Next, note that

max
C∈Rm×n

∥C∥2≤1

Tr
(
C⊤B

)
≥ Tr

(
D⊤B

)
= Tr

(
VrU

⊤
r UrΣrV

⊤
r

)
= Tr

(
VrΣrV

⊤
r

)
= Tr

(
V ⊤
r VrΣr

)
= Tr (Σr)

=
r∑

i=1

σi{B}

= f(B).

(b) Prove that
f(B) ≥ max

C∈Rm×n

∥C∥2≤1

Tr
(
C⊤B

)
. (0.16)

Hint. Let r
.
= rank(B) and expand B into its outer product SVD, i.e., B =∑r

i=1 σi{B}u⃗iv⃗
⊤
i .
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Hint. You may use the cyclic and linearity properties of traces without proof.
If XY Z and ZXY are valid matrix products then Tr (XY Z) = Tr (ZXY ).
Also, Tr (αX + βY ) = αTr (X) + βTr (Y ) for α, β ∈ R.

Solution:

Let r = rank(B). Let B =
∑r

i=1 σi{B}u⃗iv⃗
⊤
i be an outer product SVD of B.

For any C ∈ Rm×n such that ∥C∥2 ≤ 1, we have

Tr
(
C⊤B

)
= Tr

(
C⊤

(
r∑

i=1

σi{B}u⃗iv⃗
⊤
i

))

= Tr

(
r∑

i=1

σi{B}C⊤u⃗iv⃗
⊤
i

)

=
r∑

i=1

σi{B}Tr
(
C⊤u⃗iv⃗

⊤
i

)
=

r∑
i=1

σi{B}Tr
(
v⃗⊤i C

⊤u⃗i

)
=

r∑
i=1

σi{B}(v⃗⊤i C⊤u⃗i)

≤
r∑

i=1

σi{B}∥Cv⃗i∥2∥u⃗i∥2

≤
r∑

i=1

σi{B} ∥C∥2︸ ︷︷ ︸
≤1

∥v⃗i∥2︸ ︷︷ ︸
=1

∥u⃗i∥2︸ ︷︷ ︸
=1

≤
r∑

i=1

σi{B}

= f(B).

This holds for all C such that ∥C∥2 ≤ 1, so taking the max over C gets

f(B) ≥ max
C∈Rm×n

∥C∥2≤1

Tr
(
C⊤B

)
(0.17)

as desired.
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Optional Problem (“Symmetric Matrices”, Spring 2023)
1. Let A ∈ Rn×n be a square matrix. Prove that if A is symmetric then A2k is

symmetric positive semidefinite for all integers k > 1.

Solution:

Many different proofs. Diagonalizing A we get A = UΛU⊤. Then Ak =
UΛ2kU⊤ and Λ2k ⪰ 0.

2. Prove that if A ∈ Rn×n is symmetric then its matrix exponential, defined as
eA ∈ Rn×n given by

eA = I + A+
1

2
A2 + · · · =

∞∑
k=0

1

k!
Ak (0.18)

is symmetric positive definite.

Solution: Diagonalizing A = UΛU⊤, we get

eA =
∞∑
k=0

1

k!
Ak

=
∞∑
k=0

1

k!
(UΛU⊤)k

=
∞∑
k=0

1

k!
UΛkU⊤

= U

(
∞∑
k=0

1

k!
Λk

)
U⊤

= U

 ∞∑
k=0

1

k!

λ1

. . .
λn


kU⊤

= U


∑∞

k=0
λk
1

k!
. . . ∑∞

k=0
λk
n

k!

U⊤

= U

e
λ1

. . .
eλn

U⊤.

This is a symmetric matrix whose eigenvalues are eλi > 0, hence it is positive
definite.
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