
1

EECS 127/227AT Optimization Models in Engineering
Spring 2020 Optimal and Adaptive Control Project

In this project, we’ll theoretically and empirically study the differences between optimal and adap-
tive control.

Introduction Control of dynamical systems is ubiquitous in the real world. It is used airplanes,
manufacturing plants, and can even be used to model biological phenomena as well as the stock
market. The aforementioned systems can always be approximated via vector-valued differential
equations

ẋ = f(x, u)

y = h(x, u)

where f and h are vector valued functions, y is an observation, x is a state and u is known as the
input to the system or the control. 99% of the time, the question posed by controls engineers is the
following:

Given f and g, how can I design a control law u = g(y) to control x to a desired state xT ?

The first equation ẋ = f(x, u) tells us (implicitly) how the internal state of the system evolves
as a function of the input. Note in real life we actually need to solve the vector-valued equation
ẋ = f(x, u) to figure out how our state x evolves in time. The second equation y = h(x, u) de-
scribes the relation between our state, our control and what we can actually observe from this. As
a concrete example, you may model an airplane as a 12-state system (that is x ∈ R12) but perhaps
you can only measure the plane’s speed, height, pitch, roll and yaw (y ∈ R5). If we had access
to the internal state (that is y = x or equivalently h(x, u) = x), we practically have a lens into
the inner workings of the entire dynamical system governed by our function f . Note usually f is
derived using the laws of physics for mechanical systems, or interpolation models for more complex
phenomena. h is usually given to us or we get to design it as a controls engineer (should I put a
sensor to measure the velocity? if that’s too expensive, should I just measure the acceleration?).
The study of all these questions and more demand an entire course on control.

The more complicated your system (the more complicated f and g are), it becomes harder to design
control laws. For this reason, lots of theory and time has been devoted to understanding Linear
Time Invariant (LTI) systems

ẋ = Ax+Bu

y = Cx+Du

The above is Linear because everything is a linear function of (x, u), and Time Invariant since the
state transition matrix A is constant throughout time. For the remainder of this project, we will
consider discrete LTI systems

xk+1 = Axk +Buk

yk = Cxk +Duk



2

It is easy to go from traditional LTI systems to their discrete counterpart by rewriting the derivative
as a first order difference and appropriately redefining the (A,B,C,D) matrices. Note the role f, g
played before are now played by (A,B,C,D) – that is, these four matrices capture the internal
physics of the system and what we can observe about the system.

Motivation Our goal (for this project and most controls problems) is to design a controller that
tells us the optimal sequence of controls u1, u2, . . . , uT to apply to a given system in order to control
it from an initial state x0 to a desired state xT . We can reformulate this problem using the language
of optimization. We are interested in the following two settings

(a) You know (A,B,C,D)

(b) You don’t know (A,B,C,D)

The study of the first setting is often referred to as optimal control and the second setting is referred
to as adaptive control. Clearly adaptive control is much harder than optimal control (how can you
control something where you don’t fully understand how it works?).

Outline We’ll first walk through optimal control, how to formulate the LQR problem, and derive
some properties/variations of it. After, we will look at some very simple adaptive control problems
and see the challenges faced. Note this project comes with two Jupyter Notebooks; you must
complete both.

Notation and Assumption All matrices are denoted using uppercase letters and all vectors
are denoted using lowercase letters (differentiating scalars from vectors should be obvious from
context). A ∈ Rn×n is always a square matrix. Additionally, xk ∈ Rn, uk ∈ Rm, and B ∈ Rn×m.
Unless otherwise specified, the dynamical system being studied is always

xk+1 = Axk +Buk

yk = xk

that is, you always have full access to the state of the system.

1. Optimal Control Just like how LTI systems are the most well understood control systems, ar-
guably the most well understood optimal control problem is the Linear Quadratic Regulator (LQR).
In the LQR problem, we are interested in controlling our system from a given initial state x0 = x̄
to a desired state xN = 0 (without loss of generality, we want to control our system to the 0 state).
The optimization problem we are interested in solving (known as the discrete time, finite horizon
LQR problem) is

min
{xi}Ni=1,{ui}N−1

i=0

JN (x, u) (1)

s.t. xk+1 = Axk +Buk, k = 0, . . . , N − 1

x0 = x̄

where

JN (x, u) = x>NQxN +

N−1∑
k=0

x>k Qxk + u>k Ruk



3

Note we explicitly write the optimization over the variables {xi}Ni=1 despite this being trivial – given
optimal uk, the optimal xk+1 are obviously xk+1 = Axk +Buk. Here, Q,R � 0 specified by us, the
control engineer. These matrices determine how much we penalize the magnitudes of the entries
of xk and uk respectively. For a concrete example, consider the case when Q = qI and R = rI for
some q, r > 0. Then,

x>Qx+ u>Ru = q‖x‖22 + r‖u‖22
where the first term can be seen as a measurement of how far away we are from the origin and the
second can be viewed as how much “energy” we are putting into the system. Changing Q and R
will result in different control policies with different properties.

There are two popular approaches to solving (1). The first we’ll cover is known as the Discrete
Algebraic Riccati Equations (DARE). For a thorough derivation of what we present below, see
https://stanford.edu/class/ee363/lectures/dlqr.pdf.

DARE is a two step procedure: compute a set of matrices Pk backwards in time (get PN , then
PN−1, ...) and then compute the optimal control uk forward in time. More concretely, let PN = Q
and compute

Pk = ATPk+1A− (ATPk+1B)(R+BTPk+1B)−1(BTPk+1A) +Q, k = N − 1, . . . , 0

and set

u∗k = −(R+BTPk+1B)−1(BTPk+1A)xk, k = 0, . . . , N − 1

For a more direct approach, notice that (1) is simply a quadratic program. We show how we can
reformulate this problem as a least-squares problem and trivially arrive at a solution. The insight
is that we unroll the recursion given by the equality constraints and pass them into our objective
function. More concretely, let

x̃ =


x1
x2
...
xN

 , ũ =


u0
u1
...

uN−1


In other words, x̃ is the stack of all xk vectors and is therefore in RNn. Similarly, ũ is in RNm. We
will not include x0 here because it is fixed and doesn’t affect the optimization.

(a) Rewrite the objective as JN = x̃>Q̃x̃+ũ>R̃ũ where Q̃ and R̃ are block matrices you will define.

(b) Note now that x̃ is a a function of ũ (for example x2 = Ax1 + Bu1). Using the fact that
xk+1 = Axk+Buk re-write x̃ in terms of ũ – that is, find matricesG,H such that x̃ = Gũ+Hx0.
Using this, rewrite JN from above so that it is only a function of ũ.

(c) Solve for ũ∗ = arg minũ JN (ũ).

(d) Consider a generalization of (1), the situation where we have constraints on our control (for
example ‖uk‖∞ ≤ ū for all k). If this is the case, we cannot solve (1) using DARE or the method
above. Alternatively, we can tune Q,R appropriately to achieve a desired system response
(if R is extremely large, u will be forced to be small). Work through the python notebook
lqr.ipynb to study the differences between enforcing constraints on the optimization directly
and “pseudo”-enforcing them by tuning Q,R.

https://stanford.edu/class/ee363/lectures/dlqr.pdf


4

2. Adaptive Control Generally speaking, adaptive control problems are orders of magnitude harder
than traditional optimal control problems. There are two main ways of performing adaptive con-
trol: 1) Dual Control and 2) Non-dual control.

Dual control refers to the idea of probing a system with control inputs (but not too aggressively) in
order to learn how the systems behaves so that we can identify it. There is a clear trade-off here:
if we give an unknown system too aggresive of a control it may cause the system to go unstable,
but if we do not excite the system enough (or in the extreme case where we do not provide any
control) we cannot learn anything about the system.

Non-dual control instead estimates the parameters of the system and takes these as fixed, true
values. Then using these values, a control law is designed for the system. Using the new inputs and
seeing new outputs of the system, we update our model parameters and iterate. This is known as
non-dual control since we do not purposely probe the system in order to learn about it. This type
of control has its own problems since it can lead to identifiability issues; it is plausible that we may
not identify the parameters properly and controlling the system will lead us to learning erroneous
parameters or prevent us from learning the system at all.

In general, people are more interested in finding non-optimal dual controllers. However, the problem
of adaptive control remains extremely challenging and problem specific. Recent work in system-
level synthesis is a type of non-dual adaptive control that introduces machine learning concepts
and online optimization in order to learn the system parameters and stabilize the system.

For this worksheet, let’s stick to the basics. Assume we are always given x0 – a starting state.
Consider the single-input single-output (SISO) system

xk+1 = xk + buk + wk

where b ∼ N (b̄, σ2b ) and wk ∼ N (0, σ2w) and we have a quadratic terminal cost E[x21]. We are
interested in minimizing the terminal cost but we do not know the system parameters.

(a) Solve minu0 E[x21] where the expectation is taking with respect to all the randomness in the
system. Discuss what happens to u0 as σ2b increase and interpret your result.

(b) Now we separate the control and system identification process and see what ensues for a SISO
system. Consider the SISO system

xk+1 = axk + buk + wk

and the quadratic cost E[
∑N

k=1 x
2
k]. Assume (a, b) are known. Compute u∗k for all k.

(c) Now assume (a, b) are unknown and consider the feedback law uk = γxk for some γ. Explain
how using uk = γxk makes the system unidentifiable – here, unidentifiable means there exists
multiple pairs (a, b) such that we would not be able to distinguish between them. (Hint: con-
sider the closed-loop system).

(d) Show that modifying the control law to uk = γxk + δk makes the system identifiable.



5

(e) Now let’s consider a multiple-input multiple-output system (MIMO)

xk+1 = Axk +Buk

yk = xk

where A ∈ Rn×n and B ∈ Rn×m. Suppose we’ve observed {yi}Ti=1, {ui}
T−1
i=0 for some T . We

can construct estimates (Â, B̂) of (A,B) using a least-squares loss

(Â, B̂) = arg min
A,B

T−1∑
k=0

‖yk+1 −Ayk −Buk‖22

Show how to rewrite the above as

(Â, B̂) = arg min
A,B
‖Y vec(A>) + Uvec(B>)− Z‖22

for matrices Y, U, Z that you will define. Here vec(A) is the operation that takes in a matrix
and stacks its columns on top of each other. For example if

A =

[
1 3
2 7

]
=⇒ vec(A>) =


1
3
2
7


(f) Compute vec(A>

∗
) and vec(B>

∗
)

(g) Note sometimes the least squares problem does not have a unique solution. In this case, how
can you modify the objective in order to guarantee there exists a unique solution? (Hint:
regularize)

(h) Consider a case where we want to perform adaptive control on a MIMO system instead of a
SISO system. We’ve already seen in parts (d) and (e) one way of performing system iden-
tification. Work through the python notebook ac.ipynb on how to implement a naive dual
control strategy and study how it performs on different systems.


