University of California, Berkeley
Department of Electrical Engineering and Computer Science

EE128 Feedback Control Fall 2004

Course Description:

Three hours of lecture and three hours of laboratory per week. Analysis and synthesis of continuous and sampled-data linear feedback control systems. Advantages of feedback. Design by root locus, frequency response, and state space methods, with a comparison of techniques.

Prerequisite: EE120.

Topics Covered:

- Introduction to Control Systems
- Mathematical Modeling of Electrical and Mechanical Systems
- Block Diagram Manipulation
- State Variable Representation
- Time Domain Analysis
- PID controller
- Stability analysis of Control Systems
- Routh's stability criterion
- Root Locus Techniques
- Nyquist criteria, Gain Margins; Phase Margins
- Lead and lag compensator design
- State Variable Theory
- Coordinate transformation
- Canonical realization
- Controllability and observability
- State feedback and estimator design
- Discrete time system
- Discrete controller design by emulation
- Z-domain controller design

Course Instructor: Ping Hsu

Office: Cory 477

Phone and E-mail: (408) 924-3902, pinghsu@comcast.net

Grading: Homework: 10%, Lab: 25%, Midterm: 25%, Final: 40%
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Overview</td>
<td>Overview</td>
</tr>
</tbody>
</table>
| 2. Dynamic Models (1st week) | 2.1 Dynamics of Mechanical Systems
2.2 Diff Equ. in State variable form
2.6 Linearization |
| 3. Dynamic Response (2nd week) | 3.1 The Laplace transform
3.2 Block diagram
3.3 Response versus Pole locations
3.4 Time-domain specification
3.5 Effects of zeros and additional poles |
| 4. Basic Properties of Feedback (3~4th week) | 3.6 Stability, Routh stability criterion
4.1 A case study of speed controller
4.2 The classical three-term controller (PID)
4.3 Steady-state Tracking and system type |
| 5. The Root Locus Design Methods (5-6th week) | 5.1 Root locus of a basic feedback system
5.2 Guidelines for sketching a root locus
5.3 Selected illustrative root loci
5.4 Selecting gain from the root locus
5.5 Dynamic compensation |
| 6. Frequency Response Design Method (7~8th week) | 6.1 Frequency response
6.2 Stability
6.3 The Nyquist Stability Criterion
6.4 Stability Margins
6.7 Compensation (lead/lag compensator) |
| Midterm | |
| 7. State Space Design (9~11th week) | 7.1 Advantages of state space
7.2 Analysis of the state equation
7.3 Control law design for full state feedback
7.5 Estimator Design
7.6 Compensator Design |
| 8. Digital Control (12~14th week) | 8.1 Digitization
8.2 Dynamic Analysis of discrete systems
8.3 Design by Emulation
8.4 Discrete Design
8.5 State space design methods |