(1) Textbook problem 5.6 (g)

Multiple poles at the origin Sketch the root locus with respect to K for the equation $1 + KL(s) = 0$ and the following choices for $L(s)$. Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

$$(g) \quad L(s) = \frac{(s + 1)^2}{s^3(s + 10)^2}$$

(2) Textbook problem 5.10

A simplified model of the longitudinal motion of a certain helicopter near hover has the transfer function

$$G(s) = \frac{9.8(s^2 - 0.5s + 6.3)}{(s + 0.66)(s^2 - 0.24s + 0.15)},$$

and the characteristic equation $1 + D(s)G(s) = 0$. Let $D(s) = k_p$ at first.

(a) Compute the departure and arrival angles at the complex poles and zeros.

(b) Sketch the root locus for this system for parameter $K = 9.8k_p$. Use axes $-4 \leq x \leq 4$. $-3 \leq y \leq 3$;

(c) Verify your answer using MATLAB. Use the command `axes([-4 4 -3 3])` to get the right scales.

(d) Suggest a practical (at least as many poles as zeros) alternative compensation $D(s)$ which will at least result in a stable system.
(3) Textbook problem 5.22

22. For the system in Fig. 5.55:

(a) Find the locus of closed-loop roots with respect to K.
(b) Is there a value of K that will cause all roots to have a damping ratio greater than 0.5?
(c) Find the values of K that yield closed-loop poles with the damping ratio $\zeta = 0.707$.
(d) Use MATLAB to plot the response of the resulting design to a reference step.

(4) Textbook problem 5.33

Consider the rocket-positioning system shown in Fig.
(a) Show that if the sensor that measures \(x \) has a unity transfer function, the lead compensator

\[
H(s) = K \frac{s + 2}{s + 4}
\]

stabilizes the system.

(b) Assume that the sensor transfer function is modeled by a single pole with a 0.1 sec time constant and unity DC gain. Using the root-locus procedure, find a value for the gain \(K \) that will provide the maximum damping ratio.

(5) Textbook problem 6.3 (c)

3. Sketch the asymptotes of the Bode plot magnitude and phase for each of the following open-loop transfer functions. After completing the hand sketches verify your result using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

\[
(c) \quad L(s) = \frac{1}{s(s + 1)(0.02s + 1)}
\]

(6) Textbook problem 6.6 (a)

6. Multiple poles at the origin Sketch the asymptotes of the Bode plot magnitude and phase for each of the following open-loop transfer functions. After completing the hand sketches verify your result using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

\[
(a) \quad L(s) = \frac{1}{s^2(s + 8)}
\]