- 8. For the system in Problem 35, compute the following steady-state errors:
 - (a) to a unit-step reference input;
 - (b) to a unit-ramp reference input;
 - (c) to a unit-step disturbance input;
 - (d) for a unit-ramp disturbance input.
 - (e) Verify your answers to parts (a) to (d) using MATLAB. Note that a ramp response can be generated as the step response of a system modified by an added integrator at the reference input.

(a)

$$\Omega_r(t) = u(t) \Longrightarrow \Omega_r(s) = \frac{1}{s}$$

$$e_{ss} = \lim_{s \to 0} s\Omega_r(s) \left(\frac{1}{1 + G(s)}\right)$$

$$= \lim_{s \to 0} s \frac{1}{s} \left(\frac{1}{1 + (k_p + \frac{k_I}{s})(\frac{600}{s + 60})}\right)$$

$$= 0$$

(b)

$$\Omega_r(t) = r(t) \Longrightarrow \Omega_r(s) = \frac{1}{s^2}$$

$$e_{ss} = \lim_{s \to 0} s \frac{1}{s^2} \left(\frac{1}{1 + (k_p + \frac{k_I}{s})(\frac{600}{s + 60})} \right)$$

$$= \frac{1}{10k_I}$$

(c)

$$e_{ss} = \lim_{s \to 0} [sW(s) \frac{1500}{600} \frac{\frac{600}{s + 60}}{1 + \frac{600}{s + 60} (k_p + \frac{k_I}{s})}]$$

$$W(s) = \frac{1}{s}$$

$$e_{ss} = \lim_{s \to 0} [s \frac{1}{s} \frac{1500}{600} \frac{\frac{600}{s + 60}}{1 + \frac{600}{s + 60} (k_p + \frac{k_I}{s})}]$$

$$= 0$$

(d)
$$\begin{split} W(s) &= \frac{1}{s^2} \\ e_{ss} &= \lim_{s \to 0} \left[s \frac{1}{s^2} \frac{1500}{600} \frac{\frac{600}{s + 60}}{1 + \frac{600}{s + 60} (k_p + \frac{k_I}{s})} \right] \\ &= \frac{15}{6} \frac{1}{k_I} = 2.5 \frac{1}{k_I} \end{split}$$

See attached transient responses.

9. Consider the system shown in Fig. 4.33. Show that the system is type 1 and compute the K_v .

Figure 4.33: Control system for Problem 9

Solution:

The system has unity feedback with one pole at s=0 and is thus Type 1 with $K_v=\lim_{s\to 0}sG(s)=Kb$.

11. Consider the system shown in Fig. 4.35, where

$$D(s) = K \frac{(s+\alpha)^2}{s^2 + \omega_o^2}.$$

Figure 4.35: Control system for Problem 11

- (a) Prove that if the system is stable, it is capable of tracking a sinusoidal reference input $r = \sin \omega_o t$ with zero steady-state error. (Look at the transfer function from R to E and consider the gain at ω_o .)
- (b) Use Routh's criteria to find the range of K such that the closed-loop system remains stable if $\omega_o = 1$ and $\alpha = 0.25$.

Solution:

(a)

$$\begin{array}{lcl} D(s)G(s) & = & \frac{K(s+\alpha)^2}{(s^2+\omega_o^2)s(s+1)} \\ & \frac{E(s)}{R(s)} & = & \frac{1}{1+DG} \\ & = & \frac{s(s+1)(s^2+\omega_o^2)}{(s^2+\omega_o^2)s(s+1)+K(s+\alpha)^2} \end{array}$$

The gain of this transfer function is zero at $s=\pm j\omega_o$ and we expect the error to be zero if R is a sinusoid at that frequency. More formally, let $R(s)=\frac{\omega_n}{s^2+\omega_n^2}$ then

$$E(s) = \frac{s(s+1)(s^2 + \omega_o^2)}{(s^2 + \omega_o^2)s(s+1) + K(s+\alpha)^2} \frac{\omega_n}{s^2 + \omega_n^2}$$

Assuming the (closed-loop) system is stable, then if $\omega_n = \omega_o E(s)$ has a pole on the imaginary axis and the FVT does not apply. The final error will NOT be zero in this case. However, if $\omega_n = \omega_o$ we can use the FVT and

$$e_{ss} = \lim_{s \to 0} sE(s) = 0$$

12. Consider the system shown in Fig. 4.36 which represents control of the angle of a pendulum which has no damping.

Figure 4.36: Control system for Problem 12

- (a) What condition must D(s) satisfy so that the system can track a ramp reference input with constant steady-state error?
- (b) For a transfer function D(s) that stabilizes the system and satisfies the condition in part (a), find the class of disturbances w(t) that the system can reject with zero steady-state error.
- (c) Show that although a PI controller satisfies the condition derived in part (a), it will not yield a stable closed-loop system. Will a PID controller work; that is, satisfy part (a) and stabilize the system? If so, what constraints must k_p , k_I , and k_D satisfy?
- (d) Discuss qualitatively and briefly the effects of small variations on the controller parameters $k_p,\ k_I,$ and k_D on the system's step response rise time and overshoot.

Solution:

(a)
$$Y = \frac{1}{s^2}(W + D(R - Y) - KY)$$

$$Y(\frac{s^2 + D + K}{s^2}) = \frac{W + DR}{s^2}$$

$$Y = \frac{D}{s^2 + D + K}R + \frac{1}{s^2 + D + K}W$$

$$E(s) = R(s) - Y(s) = \frac{-D + s^2 + D + K}{s^2 + D + K}R(s)$$

$$= \frac{s^2 + K}{s^2 + D + K}R(s)$$

for constant steady-state error to a ramp,

$$\lim_{s \to 0} s \left(\frac{s^2 + K}{s^2 + D + K}\right) \frac{1}{s^2} = \text{constant}$$

$$\lim_{s \to 0} s (s^2 + D + K) = \text{constant}$$

$$\lim_{s \to 0} s D(s) = \text{constant}$$

D(s) must have a pole at the origin.

(b)

$$Y(s) = \frac{1}{s^2 + D(s) + K} W(s)$$

$$\lim_{s \to 0} s (\frac{1}{s^2 + D(s) + K}) \frac{1}{s^{\ell}} = 0$$

iff

$$\lim_{s \to 0} s^{\ell - 1} D(s) = \infty$$

iff $\ell=1$ since D(s) has a pole at the origin. Therefore system will reject step disturbances.

(c) For PI-controller,

$$D(s) = (k_p + \frac{k_I}{s})$$

$$\frac{Y(s)}{R(s)} = \frac{D(s)}{s^2 + D(s) + K} = \frac{(\frac{k_p s + k_I}{s})}{s^2 + (\frac{k_p s + k_I}{s}) + K}$$

$$= \frac{k_p s + k_I}{s^3 + (k_p s + k_I) + Ks}$$

Because there is no term in s^2 this characteristic equation must have at least one pole in the right half-plane. Try PID the controller, $D(s) = (k_p + k_D s + \frac{k_I}{s})$

$$\frac{Y(s)}{R(s)} = \frac{k_D s^2 + k_p s + k_I}{s^3 + (k_D s^2 + k_p s + k_I) + K s}$$

$$= \frac{k_D s^2 + k_p s + k_I}{s^3 + k_D s^2 + (k_p + K) s + k_I}$$

Routh's test on the characteristic equation is:

$$s^3:$$
 1 $K+k_p$
 $s^2:$ k_D k_I
 $s:$ $\frac{k_D(K+k_p)-k_I}{k_D}$ 0
 $s^0:$ k_I 0

- 17. A controller for a satellite attitude control with transfer function $G=1/s^2$ has been designed with a unity feedback structure and has the transfer function $D(s)=\frac{10(s+2)}{s+5}$
 - (a) Find the system type for reference tracking and the corresponding error constant for this system.
 - (b) If a disturbance torque adds to the control so that the input to the process is u+w, what is the system type and corresponding error constant with respect to disturbance rejection?

(a)
$$K_p = \lim_{s \to 0} D(s)G(s) = \infty$$

$$e_{ss} = \frac{1}{1 + K_p} = 0.$$

$$K_v = \lim_{s \to 0} sD(s)G(s) = \infty$$

$$e_{ss} = \frac{1}{K_v} = 0.$$

$$K_a = \lim_{s \to 0} s^2D(s)G(s) = 4$$

$$e_{ss} = \frac{1}{K_a} = 0.25.$$

(b) For the disturbance input, the error is

$$\begin{array}{rcl} \frac{E(s)}{W(s)} & = & -\frac{G}{1+GD} \\ & = & -\frac{s+5}{s^2(s+5)+10(s+2)} \end{array}$$

The steady-state error to a step is thus $e_{ss} = 0.25 = \frac{1}{1 + K_p}$. Therefore,

$$K_p = 3$$

(a)
$$K = 1/\tau$$
; $a = s$; $b = 1$

(b)
$$K = c$$
; $a = s^2 + 1$; $b = s + 1$

i.
$$K = AT$$
; $a = (s+c)^3$; $b = s+1/T$

ii.
$$K = AT$$
; $a = (s+c)^3 + A$; $b = s$

- iii. The parameter c enters the equation in a nonlinear way and a standard root locus does not apply. However, using a polynomial solver, the roots can be plotted versus c.
- (d) Part (d)

i.
$$K = k_p A \tau$$
; $a = s(s + 1/\tau)d(s) + k_I(s + 1/\tau)c(s) + \frac{k_D}{\tau} s^2 A c(s)$; $b = s(s + 1/\tau)c(s)$

ii.
$$K = Ak_I$$
; $a = s(s+1/\tau)d(s) + Ak_ps(s+1/\tau) + \frac{k_D}{\tau}s^2Ac(s)$; $b = s(s+1/\tau)c(s)$

iii.
$$K = \frac{Ak_D}{\tau}$$
; $a = s(s+1/\tau)d(s) + Ak_ps(s+1/\tau)c(s) + Ak_I(s+1/\tau)c(s)$; $b = s^2c(s)$

iv.
$$K = 1/\tau$$
; $a = s^2 d(s) + k_p A s^2 c(s) + k_I A s c(s)$; $b = s d(s) + k_p S A c(s) + k_I A c(s) + k_D S^2 A c(s)$

Problems and solutions for Section 5.2

2. Roughly sketch the root loci for the pole-zero maps as shown in Fig. 5.62. Show your estimates of the center and angles of the asymptotes, a rough evaluation of arrival and departure angles for complex poles and zeros, and the loci for positive values of the parameter K. Each pole-zero map is from a characteristic equation of the form

$$1 + K \frac{b(s)}{a(s)} = 0,$$

where the roots of the numerator b(s) are shown as small circles o and the roots of the denominator a(s) are shown as $\times' s$ on the s-plane. Note that in Fig. 5.62(c), there are two poles at the origin.

Solution:

(a)
$$a(s) = s^2 + s$$
; $b(s) = s + 1$

(b)
$$a(s) = s^2 + 0.2s + 1$$
; $b(s) = s + 1$

Figure 5.62: Pole-zero maps from Figure 5.62

Angle of departure: 135.7

Breakin(s) -4.97

(c)
$$a(s) = s^2$$
; $b(s) = (s+1)$

Breakin(s) -2

(d)
$$a(s) = s^2 + 5s + 6$$
; $b(s) = s^2 + s$

Breakin(s) -2.37

Breakaway(s) -0.634

(e)
$$a(s) = s^3 + 3s^2 + 4s - 8$$

Center of asymptotes -1

Angles of asymptotes $\pm 60, 180$

Angle of departure: -56.3

(f)
$$a(s) = s^3 + 3s^2 + s - 5$$
; $b(s) = s + 1$

Center of asymptotes -.667

Angles of asymptotes $\pm 60, -180$

Angle of departure: -90

Breakin(s) -2.06

Breakaway(s) 0.503

3. For the characteristic equation

$$1 + \frac{K}{s(s+1)(s+5)} = 0:$$

- (a) Draw the real-axis segments of the corresponding root locus.
- (b) Sketch the asymptotes of the locus for $K \to \infty$.
- (c) For what value of K are the roots on the imaginary axis?
- (d) Verify your sketch with a MATLAB plot.

Solution:

- (a) The real axis segments are $0 > \sigma > -1$; $-5 > \sigma$
- (b) $\alpha = -6/3 = -2$; $\phi_i = \pm 60$, 180
- (c) $K_o = 30$

Solution for Problem 5.3

4. Real poles and zeros. Sketch the root locus with respect to K for the equation 1+KL(s)=0 and the following choices for L(s). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a)
$$L(s) = \frac{1}{s(s+1)(s+5)(s+10)}$$

(b)
$$L(s) = \frac{(s+2)}{s(s+1)(s+5)(s+10)}$$

(c)
$$L(s) = \frac{(s+2)(s+6)}{s(s+1)(s+5)(s+10)}$$

(d)
$$L(s) = \frac{(s+2)(s+4)}{s(s+1)(s+5)(s+10)}$$

All the root locus plots are displayed at the end of the solution set for this problem.

- (a) $\alpha = -4$; $\phi_i = \pm 45$; ± 135 ; $\omega_o = 1.77$
- (b) $\alpha = -4.67$; $\phi_i = \pm 60$; ± 180 ; $\omega_o = 5.98$
- (c) $\alpha = -4$; $\phi_i = \pm 90$; $\omega_o > none$
- (d) $\alpha = -5$; $\phi_i = \pm 90$; $\omega_o > none$

Solution for Problem 5.4

5. Complex poles and zeros Sketch the root locus with respect to K for the equation 1+KL(s)=0 and the following choices for L(s). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a)
$$L(s) = \frac{1}{s^2 + 3s + 10}$$

(b)
$$L(s) = \frac{1}{s(s^2 + 3s + 10)}$$

(c)
$$L(s) = \frac{(s^2 + 2s + 8)}{s(s^2 + 2s + 10)}$$

(d)
$$L(s) = \frac{(s^2 + 2s + 12)}{s(s^2 + 2s + 10)}$$

(e)
$$L(s) = \frac{(s^2+1)}{s(s^2+4)}$$

(f)
$$L(s) = \frac{(s^2+4)}{s(s^2+1)}$$

All the root locus plots are displayed at the end of the solution set for this problem.

(a)
$$\alpha = -3$$
; $\phi_i = \pm 90$; $\theta_d = \pm 90 \ \omega_o - > none$

(b)
$$\alpha = -3; \, \phi_i = \pm 60, \pm 180; \, \theta_d = \pm 28.3 \,\, \omega_o = 3.16$$

(c)
$$\alpha=-2;\,\phi_i=\pm 180;\,\theta_d=\pm 161.6;\;\theta_a=\pm 200.7;\;\omega_o->none$$

(d)
$$\alpha = -2$$
; $\phi_i = \pm 180$; $\theta_d = \pm 18.4$; $\theta_a = \pm 16.8$; $\omega_o - > none$

(e)
$$\alpha = 0$$
; $\phi_i = \pm 180$; $\theta_d = \pm 180$; $\theta_a = \pm 180$; $\omega_o - > none$

(f)
$$\alpha=0;~\phi_i=\pm 180;~\theta_d=0;~\theta_a=0;~\omega_o->none$$

Solution to Problem 5.5

6. Multiple poles at the origin Sketch the root locus with respect to K for the equation 1+KL(s)=0 and the following choices for L(s). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a)
$$L(s) = \frac{1}{s^2(s+8)}$$

(b)
$$L(s) = \frac{1}{s^3(s+8)}$$

(c)
$$L(s) = \frac{1}{s^4(s+8)}$$

(d)
$$L(s) = \frac{(s+3)}{s^2(s+8)}$$

(e)
$$L(s) = \frac{(s+3)}{s^3(s+4)}$$

(f)
$$L(s) = \frac{(s+1)^2}{s^3(s+4)}$$

(g)
$$L(s) = \frac{(s+1)^2}{s^3(s+10)^2}$$

Solution:

All the root locus plots are displayed at the end of the solution set for this problem.

(a)
$$\alpha = -2.67$$
; $\phi_i = \pm 60$; ± 180 ; $w_0 - > none$

(b)
$$\alpha = -2$$
; $\phi_i = \pm 45$; ± 135 ; $w_0 - > none$

(c)
$$\alpha = -1.6$$
; $\phi_i = \pm 36$; ± 108 ; $w_0 - > none$

(d)
$$\alpha = -2.5$$
; $\phi_i = \pm 90$; $w_0 - > none$

(e)
$$\alpha = -0.33$$
; $\phi_i = \pm 60$; ± 180 ; $w_0 - > none$

(f)
$$\alpha = -3$$
; $\phi_i = \pm 90$; $w_0 = \pm 1.414$

(g)
$$\alpha = -6$$
; $\phi_i = \pm 60$; 180; $w_0 = \pm 1.31$; ± 7.63

Solution for Problem 5.6

7. Mixed real and complex poles Sketch the root locus with respect to K for the equation 1+KL(s)=0 and the following choices for L(s). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a)
$$L(s) = \frac{(s+2)}{s(s+10)(s^2+2s+2)}$$

(b)
$$L(s) = \frac{(s+2)}{s^2(s+10)(s^2+6s+25)}$$

(c)
$$L(s) = \frac{(s+2)^2}{s^2(s+10)(s^2+6s+25)}$$

(d)
$$L(s) = \frac{(s+2)(s^2+4s+68)}{s^2(s+10)(s^2+4s+85)}$$

(e)
$$L(s) = \frac{[(s+1)^2+1]}{s^2(s+2)(s+3)}$$

Solution:

All the plots are attached at the end of the solution set.

(a)
$$\alpha = -3.33$$
; $\phi_i = \pm 60$; ± 180 ; $w_0 = \pm 2.32$; $\theta_d = \pm 6.34$

(b)
$$\alpha = -3.5; \ \phi_i = \pm 45; \ \pm 135; \ w_0 - > none; \qquad \theta_d = \pm 103.5$$

- (c) $\alpha = -4$; $\phi_i = \pm 60$; ± 180 ; $w_0 = \pm 6.41$; $\theta_d = \pm 14.6$
- (d) $\alpha = -4$; $\phi_i = \pm 90$; $w_0 > none$; $\theta_d = \pm 106$; $\theta_a = \pm 253.4$
- (e) $\alpha = -1.5$; $\phi_i = \pm 90$; $w_0 > none$; $\theta_a = \pm 71.6$

Solution for Problem 5.7

- 8. Right half plane poles and zeros Sketch the root locus with respect to K for the equation 1+KL(s)=0 and the following choices for L(s). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.
 - (a) $L(s)=\frac{s+2}{s+10}\frac{1}{s^2-1};$ The model for a case of magnetic levitation with lead compensation.
 - (b) $L(s)=\frac{s+2}{s(s+10)}\frac{1}{(s^2-1)};$ The magnetic levitation system with integral control and lead compensation.
 - (c) $L(s) = \frac{s-1}{s^2}$
 - (d) $L(s)=\frac{s^2+2s+1}{s(s+20)^2(s^2-2s+2)}$. What is the largest value that can be obtained for the damping ratio of the stable complex roots on this locus?