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8. For the system in Problem 33, compute the following steady-state errors:
(a) to a unit-step reference input;
(b) to a unit-ramp reference input;
(
(d
(e) Verify your answers to parts (a) to (d) using MATLAB. Note that

a ramp response can be generated as the step response of a system
modified by an added integrator at the reference input.

)
)
c) to a unit-step disturbance input;
) for a unit-ramp disturbance input.
)

Solution:
(a)
Q@) = ult) = Q(s)= 5
: 1
il = ilf})SQ’(s)(l+G(s))
1
= lim s—( )
s—0 k 600
R R e
= 0
(b)
1
Q) = rit) = Q(s) = =
1 1
€s = lims( k600 )
L4 (kyp + )= e5)
_ 1
T 10k
(c)
600
ess = li_r%[sW(s) 1652)%0 6§O+ 60 %
’ 14+ —(kp + =)
s+60"7 s
W =
S
600
e 11500 s+ 60
€ss = P-IR)[SE o0 o 600 " +ﬁ)]
s+607 " s

=0
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1
w = —
() = -
600
_ 1 1500 s+ 60
ess = limls 5500 o0
s+60° 7 s
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9. Consider the system shown in Fig. 4.33. Show that the system is type 1
and compute the K,.

+ K(as + b)
ss+ 1)

Figure 4.33: Control system for Problem 9

Solution:

The system has unity feedback with one pole at s = 0 and is thus Type 1
with K, = lirr(l)sG(s) =Kb.
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11. Consider the system shown in Fig. 4.35, where

(a)

(b)

(s+a)?
D(s) = K———.
W=
R 3 D(s) }—i !
N ) s(s + 1) oY

Figure 4.35: Control system for Problem 11

Prove that if the system is stable, it is capable of tracking a sinusoidal
reference input r = sin w,t with zero steady-state error. (Look at the
transfer function from R to F and consider the gain at w,.)

Use Routh’s criteria to find the range of K such that the closed-loop
system remains stable if w, =1 and a = 0.25.

Solution:
K(s+a)?
DGO = G
E(s) 1
R(s) =~ 1+ DG

s(s+ 1)(s2 +w?)
(s24+w2)s(s+ 1)+ K(s+ a)?

The gain of this transfer function is zero at s = +jw, and we expect
the error to be zero if R is a sinusoid at that frequency. More formally,

let R(s) = 2 L_‘:_"w2 then

s(s+ 1)(52 +w?) Wn
(82 +w2)s(s+1) + K(s +a)? 82 +w?

Assuming the (closed-loop) system is stable, then if w, = w, E(s)
has a pole on the imaginary axis and the FVT does not apply. The
final error will NOT be zero in this case. However, if w, = w, we
can use the FVT and

€55 = ll_I)l’(l) sE(s)=0



4019

12. Consider the system shown in Fig. 4.36 which represents control of the
angle of a pendulum which has no damping.

R S 0 (3 3 5 be—p—ov

| T

Figure 4.36: Control system for Problem 12

(a) What condition must D(s) satisfy so that the system can track a
ramp reference input with constant steady-state error?

(b) For a transfer function D(s) that stabilizes the system and satisfies
the condition in part (a), find the class of disturbances w(t) that the
system can reject with zero steady-state error.

(c) Show that although a PI controller satisfies the condition derived in
part (a), it will not yield a stable closed-loop system. Will a PID
controller work; that is, satisfy part (a) and stabilize the system? If
so, what constraints must &, k7, and kp satisfy?

(d) Discuss qualitatively and briefly the effects of small variations on the
controller parameters k,, k7, and kp on the system’s step response
rise time and overshoot.

Solution:

Y:%UV+MR—H—KH

s’+D+K, W+DR

Y( =2 ) 2
D 1
- s2+D+KR+s2+D+KW
-D+s’+D+K
E(s) = R(s) - Y(s) = ZT DT K R(s)
2
s+ K R(s)

T 2+D+K
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for constant steady-state error to a ramp,

2
s+ K

lim s(—————=)— = constant
50 (32+D+K)32 neren
lin%) (s> + D + K) = constant
8—

lirr(l) sD(s) = constant

88—

D(s) must have a pole at the origin.

(b) 1
YO = srperrr®
ms(——L 1 _g
0 s2+D(s)+ K’'st
iff

lirr(l) s*1D(s) = oo

iff £ = 1 since D(s) has a pole at the origin. Therefore system will
reject step disturbances.

(c) For Pl-controller,

D(s) = (kp + 1)
kp8+k[
Y(s) _ D ()
R(s) 2+ D(s)+ K 2+(kps:-k1)+K
kp8+k1

s34 (kps+kr)+ Ks

Because there is no term in s? this characteristic equation must have
at least one pole in the right half-plane. Try PID the controller,

k
D(s) = (kp + kps + )

Y(S) _ kDS2+kpS+k1
R(s) 83+ (kps?+kys+k1)+Ks
kD82 + kps + kr

83+ kps? + (kp+K)s + k;

Routh’s test on the characteristic equation is:

s3: 1 K +k,
s2 . kp kr
s kD(K+kp)—k1 0

0 kp
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17. A controller for a satellite attitude control with transfer function G' = 1/s2

has been designed with a unity feedback structure and has the transfer

2
function D(s) = —10(1+5 )
S

(a) Find the system type for reference tracking and the corresponding
error constant for this system.

(b) If a disturbance torque adds to the control so that the input to the
process is u + w, what is the system type and corresponding error
constant with respect to disturbance rejection?

Solution:

1
€ss — E = 0.25.

(b) For the disturbance input, the error is

E(s) G
W(s) 1+ GD
s+95

82(s+5)+10(s +2)

. There-

The steady-state e to a step is th = 0.25 =
eady-state error to a step is thus e, 1+ K,

fore,
K,=3
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Solution:

(a) K=1/T;a=s5b=1
b) K=ca=s>+1b=s+1
(c) Part (c)
i. K=AT;a=(s+c)%b=5+1/T
ii. K=AT;a=(s+¢c)>+A4;b=s
ili. The parameter c enters the equation in a nonlinear way and a

standard root locus does not apply. However, using a polynomial
solver, the roots can be plotted versus c.

(d) Part (d)

i. K =kyAr; a=s(s+1/7)d(s)+kr(s+1/7)c(s) + k—f—SQAc(s);
b=s(s+1/7)c(s)
ii. K = Akp; a = s(s+ 1/7)d(s) + Akps(s + 1/7) + kTDs2Ac(s);
b=s(s+1/7)c(s)
ii. K = AfD; a = s(s+1/7)d(s) + Akps(s + 1/7)c(s) + Akr(s +
1/7)c(s); b= s%c(s)

iv. K = 1/7; a = s%d(s) + kpAs®c(s) + krAsc(s); b = sd(s) +
kysAc(s) + krAc(s) + kps*Ac(s)

Problems and solutions for Section 5.2

2. Roughly sketch the root loci for the pole-zero maps as shown in Fig. 5.62.
Show your estimates of the center and angles of the asymptotes, a rough
evaluation of arrival and departure angles for complex poles and zeros,
and the loci for positive values of the parameter K. Each pole-zero map
is from a characteristic equation of the form

1+ K bla) =0,
a(s)
where the roots of the numerator b(s) are shown as small circles o and the
roots of the denominator a(s) are shown as x’s on the s-plane. Note that
in Fig. 5.62(c), there are two poles at the origin.

Solution:

(a)a(s) = s2+s;b(s) =s+1
Breakin(s) -3.43; Breakaway(s) -0.586
(b) a(s) =52 +0.25+1; b(s) =s+1
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Figure 5.62: Pole-zero maps from Figure 5.62

Angle of departure: 135.7

Breakin(s) -4.97

(c) a(s) = 5% b(s) = (s + 1)
Breakin(s) -2

(d) a(s) = 5% +55+6; b(s) =2+ s
Breakin(s) -2.37

Breakaway(s) -0.634

(e) a(s) =8> +3s2 +45 -8

Center of asymptotes -1

Angles of asymptotes 460, 180

Angle of departure: -56.3

(f) a(s) =3 +3s2+5—5;b(s) =s+1
Center of asymptotes -.667

Angles of asymptotes 460, —180
Angle of departure: -90

Breakin(s) -2.06
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Breakaway(s) 0.503

3. For the characteristic equation

K
Y e e

(a) Draw the real-axis segments of the corresponding root locus.
(b)

()

(d) Verify your sketch with a MATLAB plot.

Sketch the asymptotes of the locus for K — oco.

For what value of K are the roots on the imaginary axis?

Solution:

(a) The real axis segments are 0 >0 > —1; =5 > ¢
(b) a=—-6/3 =—-2; ¢, = £60, 180
(¢) K, =30

g s

Solution for Problem 5.3

4. Real poles and zeros.  Sketch the root locus with respect to K for the
equation 1 4+ K'L(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

1
®) L) = e G 15+ 10)
B (s+2)
®) L) = 5+ 10)
B (s+2)(s+6)
© L) = DG+ 5+ 10)



233

(s+2)(s+4)
dfi kteli= s(s+1)(s+5)(s +10)
Solution:
All the root locus plots are displayed at the end of the solution set
for this problem.

(a) @ = —4; ¢, = £45; £135; w, = 1.77
(b) a = —4.67; ¢, = £60; +£180; w, = 5.98
(c) a=—4; ¢, = £90; wo,— > none
(d) a=—-5; ¢; = +90; w,— > none
Root Locus Root Locus
€ g
N
/
\, /
4 \\ / 4
/
$ ‘\
2o et xl T 9= N X
£ g
2 / % 2 [
/ ~ |
4 // = 4
/
£ / 5
39 5 16 5 o
Real Axis Real Axis
Root Locus Root Locus
5 5 "
2 N 2
@ ‘ 1 @ [
ég 3] H—e—l) ) X ég G x—{—x D0 XX
/ \ N
=5 / £ '~
4 / 4 \
€ ‘ o i
EF] & 5 A8 = 9
Real Axis Real Axis

Solution for Problem 5.4

5. Complex poles and zeros Sketch the root locus with respect to K for the
equation 1+ KL(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

1
=
(B )= e

1
(b) L(s) = s(s? +3s +10)
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(s? 4+ 25+ 8)
s(s? +2s +10)
(s 4+2s+12)
 s(s2+2s+10)

s2+1
@ )= S

32
0 1) = o

Solution:

All the root locus plots are displayed at the end of the solution set

for this problem.

(a) a=—3; ¢, = +90; 8; = £90 w,— > none
(b) a=-3; ¢; = £60,+180; 6y = £28.3 w, = 3.16
(c) a=—2; ¢, = +180; 64 = £161.6; 6, = +200.7; w,— > none

Q

a=0; ¢, ==+180; 6, =0; 6, =0; w,— > none

)
)
)
(d) a=-2; ¢, = £180; 6, = £18.4; 0, = +16.8; wo— > none
) a=0; ¢, = +180; 6, = +180; 6, = +180; w,— > none
)

Root Locus Root Locus
10
N plot a ° 5+ / plot b
< s 2
E 2
£ 0 & o
E g
E & | E : —
Sk
-10 1 &
2 1.5 -1 05 0 6 -4 0 2 4
Real Axis Real Axis
Root Locus Root Locus
4 7 47
2 plot ¢ ‘ a9 piot d
% 3 x 3L
< < ": <
2 - 2
e . 2 2 2+
g E
E 1 iR
| i
0 . 5 —
2 -1.5 -1 05 [ 2 15 -1 05
Real Axis Real Axis
Root Locus Root Locus
3 3
u plot e . | plot f
< % |
2 P
a 5 o
£ £ | )
=] =4 |
g o ~—o g o -’
0 . 0
2 -1 0 1 2 2 3| 0 1
Real Axis Real Axis

Solution to Problem 5.5
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6. Multiple poles at the origin Sketch the root locus with respect to K for
the equation 1+ K'L(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

@ L) = 7075
0) 16) = 5055
© L) = 507
(@) Lie) = e
@) L) = o
@) 1) = S
@) 1) = At
Solution:

All the root locus plots are displayed at the end of the solution set
for this problem.

(a) o= —2.67; ¢; = £60; £180; wog— > none
(b) a@=—2; ¢, = +£45; +135; wy— > none
(c) a=—1.6; ¢, = £36; £108; wy— > none

(d) a=—-2.5; ¢, = +90; wo— > none

Il

—0.33; ¢; = £60; +180; wg— > none
(f

«

)

)
(e) &
)

)

(8) a=—6; ¢; = £60; 180; wo = £1.31; £7.63
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10 b S i
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- < | //
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© © | |
E E | \i'
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< \\ < | \
2 Oif: srX ] = 0 »———0»0 1
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o e o f
ém Of—7=% [ i Oe .
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20 Real Avis Real Axis
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< 0
o
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-20
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Real Axis

Solution for Problem 5.6

7. Mized real and complex poles Sketch the root locus with respect to K for
the equation 1+ K L(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

B (s+2)
(a) L(S) = S(S + 10)(52 + 2s +2)
B (s:112)
®) L) = F oy + 65 7 5)
(s +2)?

©) L) = i + 6572

(s+2)(s* +4s + 68)
s2(s+10)(s2 + 4s + 85)
s+ 1)?2+1]
©) I8 = e 1)
Solution:
All the plots are attached at the end of the solution set.

(d) L(s) =

(a) a=—3.33; ¢, = £60; £180; wg = +2.32; 04 = +6.34
(b) a = —3.5; ¢; = £45; £135; wo— > none; 84 = £103.5
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a = —4; ¢, = £60; £180; wy = +6.41; 04 = +14.6
(d) a=—4; ¢; = +90; wo— > none; 04 = +106; 0, = +£253.4
a = —1.5; ¢; = £90; wo— > none; 8, = £71.6

o

I

Imag Axis

=)

T

X
Imag Axis
Imag Axis

plot a I plot b plot ¢ i
10 / -/ |

X !
-10 \

-20

-10 5 0 o0 s 0 T I 0
Real Axis Real Axis

40—

5 |
plot d | plote |
2 \ | /

% : 3 | Cf\r
g ¢ = " & i
E % E | S
20 / 5
|
| |
-40 —~ 5!
-10 -5 0 -4 2 0 2
Real Axis Real Axis

Solution for Problem 5.7

8. Right half plane poles and zeros Sketch the root locus with respect to K for
the equation 1+ K'L(s) = 0 and the following choices for L(s). Be sure to
give the asymptotes, arrival and departure angles at any complex zero or
pole, and the frequency of any imaginary-axis crossing. After completing
each hand sketch verify your results using MATLAB. Turn in your hand
sketches and the MATLAB results on the same scales.

s+2 1

a) L(s) = ———=———; The model for a case of magnetic levitation
+10s2 -1
s s2 —
with lead compensation.
. s42 1 . s g s
(b) L(s) = S—(s+—10)(32—_5, The magnetic levitation system with in-
tegral control and lead compensation.
s—1
(©) Le) ==

2 +25+1
d) L(s) =
(d) L) s(s +20)2(s?2 — 25+ 2)
be obtained for the damping ratio of the stable complex roots on this
locus?

. What is the largest value that can



