Cayley-Hamilton Theorem
Every square matrix A satisfies its own characteristic equation:
\[\Delta(A) = 0 \]
where the characteristic equation (aka characteristic polynomial) is given by:
\[\Delta(\lambda) = |I - A| = \lambda^n + c_{n-1}\lambda^{n-1} + c_{n-2}\lambda^{n-2} + \ldots + c_1\lambda + c_0 = 0. \]

Proof (For case when A is similar to a diagonal matrix, i.e. for $A \in \mathbb{R}^{n \times n}$ with $A = P\Lambda P^{-1}$ where Λ is a diagonal matrix with elements on the diagonal $\lambda_1, \lambda_2, \ldots, \lambda_n$.)

Substituting A in the characteristic polynomial, we have
\[\Delta(A) = A^n + c_{n-1}A^{n-1} + c_{n-2}A^{n-2} + \ldots + c_1A + c_0I \]
(1)

Noting that $A^k = P\Lambda^kP^{-1}$, then
\[\Delta(A) = P[A^n + c_{n-1}A^{n-1} + c_{n-2}A^{n-2} + \ldots + c_1A + c_0I]P^{-1}. \]
(2)

Since Λ is diagonal, the typical i, i term is given by
\[\Delta(\lambda_i) = |\lambda_iI - A| = \lambda_i^n + c_{n-1}\lambda_i^{n-1} + c_{n-2}\lambda_i^{n-2} + \ldots + c_1\lambda_i + c_0 = 0. \]

Where the sum is zero because λ_i is a root of the characteristic polynomial. Thus $\Delta(A) = P[0]P^{-1} = [0] \quad \blacksquare$.

Matrix Exponential
Recall series form for $e^{At} = I + At + A^2\frac{t^2}{2!} + A^3\frac{t^3}{3!} + \ldots$. But from Cayley-Hamilton, we know that since $\Delta(A) = 0$ then $-A^n = c_{n-1}A^{n-1} + c_{n-2}A^{n-2} + \ldots + c_1A + c_0I$. And then all higher powers than A^n can be expressed in terms of a linear sum of $I, A, A^2, \ldots, A^{n-1}$.

Then
\[e^{At} = \alpha_0(t)I + \alpha_1(t)A + \ldots + \alpha_{n-1}(t)A^{n-1} = R(A) \]
where for a given t, $R(A)$ is a polynomial of degree $n - 1$, and α_i are found by solving $e^{\lambda_i t} = \alpha_0(t) + \alpha_1(t)\lambda_i + \ldots + \alpha_n(t)\lambda_i^n$.

Example of using C-H for matrix exponential. Given
\[A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \]
(3)

The matrix exponential can be calculated easily using Laplace Transform:
\[e^{At} = L^{-1}[sI - A]^{-1} = \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix}. \]
(4)

The matrix exponential can alternatively be calculated by Cayley-Hamilton: $e^{At} = \alpha_0(t)I + \alpha_1(t)A$.
The functions $\alpha_i(t)$ are found using $\lambda_1 = 1, \lambda_2 = 2$ by solving
\[e^{\lambda_1 t} = e^t = \alpha_0(t) + t\alpha_1(t) \]
(5)
\[e^{\lambda_2 t} = e^{2t} = \alpha_0(t) + 2\alpha_1(t) \]
(6)

Thus $\alpha_1(t) = e^{2t} - e^t$ and $\alpha_0(t) = 2e^t - e^{2t}$. Finally,
\[e^{At} = (2e^t - e^{2t}) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (e^{2t} - e^t) \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix} \]
(8)
Controllability

Assume that $\dot{x} = Ax + Bu$ is completely controllable. Recall that

$$x(t) = e^{A(t-t_o)}x(t_o) + \int_{t_o}^{t} e^{A(t-\tau)}Bu(\tau)d\tau. \quad (9)$$

Since by assumption the system is controllable, we can choose a final time t_1 such that $x(t_1) = 0$ with initial condition $x(0) = x_0$ with $t_o = 0$. So by eqn (9) we have

$$-x_0 = \int_{0}^{t_1} e^{-A\tau}Bu(\tau)d\tau. \quad (10)$$

By Cayley-Hamilton, we can express $e^{-A\tau}$ as a polynomial in A:

$$e^{-A\tau} = \alpha_0(\tau)I + \alpha_1(\tau)A + \alpha_2(\tau)A^2 + ... + \alpha_{n-1}(\tau)A^{n-1} = \sum_{j=0}^{n-1} A^j\alpha_j(\tau). \quad (11)$$

If we substitute eqn (11) into eqn (10) we obtain

$$-x_0 = \sum_{j=0}^{n-1} A^j B \int_{0}^{t_1} \alpha_j(\tau)u(\tau)d\tau. \quad (12)$$

Note that $\int_{0}^{t_1} \alpha_j(\tau)u(\tau)d\tau$ is a constant. Define $v_j = \int_{0}^{t_1} \alpha_j(\tau)u(\tau)d\tau$. Then eqn. (12) can be expressed as a matrix multiply:

$$-x_0 = \left[B | AB | A^2B | ... | A^{n-1}B \right] \begin{bmatrix} v_0 \\ v_1 \\ ... \\ v_{n-1} \end{bmatrix}. \quad (13)$$

Define the controllability matrix $C = [B | AB | A^2B | ... | A^{n-1}B]$. Note that if state space is of dimension n, then eqn (13) will only be satisfiable for all x_o if rank (C) = n. Thus the necessary condition for controllability is shown. \square