Professor Fearing EECS128/Problem Set 1 v. 1.01 Fall 2019

Due at 1700, Fri. Sep. 6 on BCourses.

Note: up to 2 students may turn in a single writeup. Reading Nise 1,2.

1. (20 pts) Case study (Nise 1.4)
 In an aircraft, the roll rate can be controlled by ailerons as shown in Fig. 1. A gyroscope is used to measure actual roll angle rate. Assume a reference input \(r \) (from pilot) is used to specify desired roll angle rate.
 a) Draw a functional block diagram for a roll angle rate control system. Show all blocks and signals, identify input and output transducers, controller and plant.
 b) Suppose the gyro fails (e.g. stuck at maximum full range). Draw a block diagram for a controller which could allow pilot to reasonably handle this case.

2. (20 pts) Static Nonlinearity in Feedback
 A nonlinear amplifier has voltage response \(g(\varepsilon) = 1000 \log(\varepsilon + 1) \). Let \(\delta(t) = 0 \). The nonlinear amplifier is used in a negative feedback system as shown in Fig. 2, with \(k = \frac{1}{3} \).
 a) Assume \(|x(t)| << 1 \). Using Taylor series approximation, show that \(y(t) \approx 3x(t) \).
 b) Consider constant output \(y_1 = 3 \). Without approximations, find the value of input \(x \) corresponding to this output.
 c) Consider constant output \(y_2 = 6 \). Without approximations, find the value of input \(x \) corresponding to this output.
 d) What is the per cent error for b) and c) compared to an ideal gain of 3?
 Aside: For stable systems with slow dynamics, with sufficient gain, a learned control law can have wide variation with little effect on reward.

3. (20 pts) Laplace transform review (Nise 2.2)
 For each transfer function below determine \(h_i(t) \).
 i) \(H_1(s) = \frac{1}{s^2 + 14s + 48} \)
 ii) \(H_2(s) = \frac{s}{s^2 + 14s + 48} \)
 iii) \(H_3(s) = \frac{s + 10}{s^2 + 14s + 48} \)
 iv) \(H_4(s) = \frac{1}{s^2 + 6s + 18} \)
 v) \(H_5(s) = \frac{1}{s^2 + 14s^2 + 48s} \)

4. (20 pts) Initial value, final value (Nise 2.2)
 For each of the following Laplace transforms \(Y_i(s) \) determine \(y_i(t = 0^+) \) and if the limit exists, \(\lim_{t \to \infty} y_i(t) \):
 i) \(Y_1(s) = \frac{s}{s+5} \)
 ii) \(Y_2(s) = \frac{s-3}{s+5} \)
 iii) \(Y_3(s) = \frac{(s+3)}{s(s+5)} \)
 iv) \(Y_4(s) = \frac{1}{s(s+5)} \)
 v) \(Y_5(s) = \frac{(s+3)^2}{(s+5)^2} \)

5. (20 pts) Electrical circuit example (Nise 2.4)
 For the circuit in Fig. 3 below, using ideal op-amp assumptions (p. 58 in 6th edition), determine \(H(s) = \frac{v_{out}(s)}{v_{in}(s)} \).