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Lab 3: “Hardware” and Proportional Control

“The worst wheel of the cart makes the most noise.” – Benjamin Franklin

1 Objectives
The goal of this lab is to:

1. derive and understand a model for the dynamics of the cart (without the pendulum).

2. use proportional control to generate a step response on the actual hardware.

2 Equipment (that is being simulated)
Cart system (no attachments), Quanser Q4/Q2-usb DAQ board w/ terminal board, amplifier and ca-

bles.

The terminal board in Figure 1 provides connectors for the inputs and outputs of the Q4/Q2-usb DAQ

boards in the computers. Specifically, you will use a single analog output (this will provide the motor

voltage) and two encoder inputs (for cart position and pendulum angle). Since the analog out ports of

the Quanser Q4/Q2-usb board are not powerful enough to drive the DC motor on the cart, the signal

needs to be amplified (in fact, the gain will be unity, but the amplifier can provide much higher currents

than the DAQ boards). Figure 2 shows the amplifier that drives the DC motor on the cart. In all of

the coming labs, you will only use the ports “From analog output (D/A)” and “To Motor”. The cables

we use are special cables that have resistors between the connector ports built in so that the connection

results in the correct op-amp circuit.

Figure 1: Terminal board of the Quanser Q4 DAQ card
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Figure 2: Amplifier for the cart’s DC motor

3 Theory

3.1 Simulink Coder, QuaRC, and the Q4 DAQ board

MATLAB’s Simulink Coder (formerly Real-Time Workshop) generates and executes C and C++ code

from Simulink diagrams, Stateflow charts, and MATLAB functions. The generated source code can be

used for real-time and nonreal-time applications, including simulation acceleration, rapid prototyping,

and hardware-in-the-loop testing.

QuaRC is Quanser’s rapid prototyping and production system for real-time control. QuaRC integrates

seamlessly with Simulink to allow Simulink models to be run in real-time on Windows. It uses a host and

target relationship that allows code generation and execution to occur on separate machines. However,

we will be using QuaRC in “Single User Mode” or “Local Configuration”, where we will be generating

and executing code on the same computer, as shown in Figure 3.

The QuaRC Simulink Development Environment (SDE) is used to generate/build code to be later run on

a real-time target from MATLAB/Simulink models. The QuaRC Windows Target feature is required to

run the generated code from MATLAB/Simulink models on a real-time Windows target (local or remote).

QuaRC Windows Target needs to be open to run any QuaRC-generated code.

While interesting, understanding the details of the implementation of the QuaRC software is not the

focus of this lab. Your task is to design the controller based on either classic or state-space techniques.

Then you will implement the controller in Simulink. This is then downloaded to the QuaRC target,

which interfaces the plant through the Q4 DAQ board. This board supports 4 A/D converters, 4 D/A

converters, 16 Digital I/Os, 2 Realtime clocks, and up to 4 Quadrature input decoders/counters. The Q4

board’s functionality has also been abstracted from the user. The board has been set up to work with

the cart and pendulum for all stations.
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Figure 3: “Local Configuration” – QuaRC Host and Target on the same PC

3.2 Dynamics of the Cart

Figure 4 shows a picture of the cart used in the lab setup for the pendulum experiments. The main

components are the Cart motor pinion (5) with attached 6V DC motor and gearbox (not visible in the

figure), the Cart position pinion (4) with attached encoder (8) and the pendulum axis (7) with attached

encoder (9).

Figure 4: Quanser IP02 cart

Figure 5 shows the cart’s free body diagram. For simplicity, we will ignore the effects of friction. In the

diagram, Fa is the input force exerted on the cart by the voltage applied to the motor, mc is the mass of

the cart. The encoder is used to keep track of the position of the cart on the track.

Using Figure 5 and basic Newtonian dynamics you can derive the equations governing the system.
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Figure 5: Free body diagram of the cart (ignoring friction)

3.3 Motor Dynamics

The input to your system is actually a voltage to the cart’s motor. Thus, you need to derive the dynamics

of the system that converts the input voltage to the force exerted on the cart. These are the dynamics

of the motor.

Figure 6 shows a diagram of the electrical components of the motor.

Figure 6: Classic armature circuit of a standard DC motor

For this derivation of the motor dynamics we assume the following:

• We disregard the motor inductance: Lm � Rm, so we can use the approximation Lm ≈ 0.

• Perfect efficiency of the motor and gearbox: ηm = ηg = 1.

The torque generated by the motor is proportional to the current flowing through the motor windings,

but is lessened due to the moment of inertia:

Tm = KtIm − Jmθ̈ (1)

Here Kt is the motor torque constant, Im is the current flowing through the coil, Jm is the moment of

inertia of the motor and θ̈ is the angular acceleration of the motor.

The current flowing through the motor can be related to the motor voltage input by:

V = ImRm + Eemf = ImRm +Kmθ̇ (2)

where θ̇ is the angular velocity of the motor, Rm is the resistance of the motor windings and Km is the

back EMF constant (in V
rad/s).
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The torque is related to the applied force via

KgTm = Fa · r (3)

where r is the radius of the motor gear and Kg is the gearbox gear ratio. The motor’s angular velocity

is related to the cart’s linear velocity via

Kgẋ = θ̇ · r ⇒ Kgẍ = θ̈ · r (4)

3.4 Step Response of a Dynamical System

Figure 7 shows the typical step response of a SISO (single-input, single-output) dynamical system.

Figure 7: Typical step response of a control system

Recall the following quantities from class:

• Steady-state value: The steady-state value of the response y(t) is defined as yss := limt→∞ y(t).

• Steady-state error: For a control system, we want the output, y(t), to follow a desired reference

signal, r(t). Thus we can define the error as e(t) := r(t)− y(t). Consequently, the steady-state error

is given by ess := limt→∞ e(t).

• Maximum overshoot: Let ymax denote the maximum value of y(t). The maximum overshoot

of the step response y(t) is defined by ymax − yss. It is often represented as a percentage of the

steady-state value: percent maximum overshoot = ymax−yss
yss

. The maximum overshoot is often used

to measure the relative stability of a system. A system with a large overshoot is usually undesirable.

• Delay time: The delay time td is defined as the time required for the step response to reach 50%

of its steady-state value.

• Rise time: The rise time tr is defined as the time required for the step response to rise from 10%

to 90% of its steady-state value.

• Settling time: The settling time ts is defined as the time required for the step response to stay
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within 5% of its steady-state value.

4 Pre-Lab

4.1 Equations Governing the Cart Dynamics

Derive the following equation of motion for the cart system shown in Figure 5:(
mcr

2Rm +RmK
2
gJm

)
ẍ+

(
KtKmK

2
g

)
ẋ = (rKtKg)V (5)

Table 1 lists the parameters that appear in (5).

Parameter Unit Description

V Volt input voltage

mc kg mass of the car

r meter radius of the motor gears

Rm Ω resistance of the motor windings

Kt N·m/A torque motor constant

Km Vs/rad back EMF constant

Kg - gearbox ratio

Jm kg m2 moment of inertia of the motor

Table 1: Parameters of the cart system

In order to derive the equation (5), follow the steps below:

1. Using the free body diagram in Figure 5, apply Newton’s second law to the cart.

2. Combine the motor dynamics, equations (1) - (4), to obtain the relationship between the input

voltage V and the applied force Fa. Substitute this relationship into your equation from Step 1.

This is the final model of your plant.

3. Is this system linear? If not, linearize the system. If so, leave as is.

4.2 Derive System Models

• Transfer Function: Apply the Laplace transform to your linear system and solve for the transfer

function H(s) = X(s)
V (s) .

• State Space Model: Using cart position and velocity as states x1, x2, respectively, and the cart

position as the system output y, derive a state space representation (i.e. matrices A,B,C and D)

for your linear system.

• SS to TF: Using the following equation, derive a transfer function from your state space matrices

and verify that it matches the transfer function you got directly from taking the Laplace transform

of the equation of motion.

G(s) =
Y (s)

U(s)
= C(sI −A)−1B +D (6)
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Hint: As you should know, the inverse of a 2× 2 matrix is given by[
a b

c d

]−1
=

1

ad− bc

[
d −b
−c a

]
(7)

4.3 MATLAB Step Response

Use the values for the parameters given in Table 2 to create a Simulink block diagram of the cart system

in a simple negative feedback loop with a gain K as the controller. It is your choice whether you want

to use the state space or transfer function representation of the system. Use a step function as input.

Parameter Value

mc 0.57 + 0.37 = 0.94 kg

r 6.36 · 10−3 m

Rm 2.6 Ω

Kt 7.67 · 10−3 Nm/A

Km 7.67 · 10−3 Vs/rad

Kg 3.71

Jm 3.9 · 10−7 kg m2

Table 2: Parameters of the cart system

Vary the value of K until you achieve a percent maximum overshoot < 3.0% and rise time tr < 0.75s.

You only need to find a single value that works, not a range of values. Include your block diagram (and

any code you used) as well as your final value of K and plots verifying these design conditions are met.

Make sure you describe your process of finding a suitable value of K.

Note: You will find the MATLAB function find(cond,N) to be very useful for this. This returns at most

the first N indices that match the condition cond. Type doc find to read about the other various uses

for this function if you wish. For example, for an array of output values out and time values time, you

can use the following code to find the time of the first value of out that exceeds the value of 0.1:

>> find(out >= 0.1,1)

ans =

110

>> time(110)

ans =

1.0900

To get more precise time and output values, we recommend that you set Simulink to a small, fixed-step

interval (e.g. 0.01s). This is done by choosing “Fixed-step” as the “Type” and “ode3” as the “Solver”

under the solver options in the model configuration parameters. You can access these settings by choosing

“Simulation” → “Model Configuration Parameters” in the Simulink window.
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5 Lab

5.1 Cart Dynamics

Confer with your group to agree on a system representation (either state space or transfer function) to

use in this lab.

5.2 Using the “Actual” Hardware: Setting up simulation

• Unzip lab3.zip in the folder/directory you wish to complete the lab in. Make sure all the files used

for this lab stay in the same folder/directory to prevent needing to add paths. The Simulink block

provided needs to reference some of the provided files.

• The block, cartDynamics, inside the library, lab_3_pseudo_hardware.slx, represents the dynamics

of the Quanser Cart. The actual cart shares the same input and output as the block. The input

being voltage applied to the motor, and the output being the position of the cart measured by the

encoder. Drag the block into your Simulink model and connect it like you did in the prelab with the

plant model.

• Encoder values for the position of the cart will be read in encoder counts, however, our input defined

in the system equations were in meters. In feedback, the two values you compare must be in the same

units, so we need a conversion factor. The Quanser manual gives the position encoder resolution

to be 4096 counts/revolution. Given that the radius of the position pinion is rpp = 0.01482975 m,

what is the “actual” encoder resolution in counts/m? Now add a gain block to the position signal

to convert the signal’s units to meters.

• Attach ‘to Workspace’ blocks (in the ‘Sinks’ folder) to the reference and output signals. Assign an

appropriate variable name, while keeping the other parameters their defaults:

– Limit data points to last: inf

– Decimation: 1

– Save format: Timeseries

– Log fixed-point data as a fi object: Checked

– Sample time: -1

This will create a struct in your Matlab workspace once the simulation completes successfully. If the

variable name was set to tmp, you can find the signal data at out.tmp.Data with its corresponding

time at out.tmp.Time.

• After you run a simulation, in the next section, you will be able to play a short movie of the cart

tracking a the set point. To visualize your cart, call cartAnimation(time,position,reference)

in the Command Window, where time is a vector of time, position is a vector of the cart position,

and reference is a vector of the set point of the cart. The reference input is optional. In the movie

that plays, the black line represents the rail, the blue rectangle is the cart, and the the red box is

the reference point. Make sure all the inputs are the same size, and that the time vectors for the

reference signal and the position signal are the same.
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5.3 Using the “Actual” Hardware: Cart Step Response

• Go back to your Simulink model of the cart system from the pre-lab. Now change the step function

to be of height 0.15, corresponding to the cart moving 0.15 m. Again, try to find a value of K so

that percent maximum overshoot < 3.0% and tr < 0.75s. Report this value in your lab report. How

different is the value you found here from the value of K you found in the pre-lab for a step size of

1? Why is that?

• Once the simulated step response looks fine, you can move over to the simulated hardware. Plot

the initial hardware response and compare with the plot from the Simulink model. How close was

the actual to the predicted? What might have caused any discrepancies? Hint: take a look at the

control signal (i.e. the motor voltage).

• Now change your value of K until you achieve a percent maximum overshoot of < 3.0% and tr <

0.75s. Report your new K value and plot the hardware response. Why is the new K different?

Show your modified hardware step response to the GSI before the end of the lab session.

• Finally, find a value of K that achieves a tr < 0.4s and maximum overshoot < 10% using the

hardware (do not use a K value over 60). Is this possible in your Simulink model from the pre-

lab? Remember that the model of cartDynamics has a more accurate representation of the real

system, so what else was modeled in the block that hasn’t been modeled in the prelab? Discuss any

discrepancies and make some hypotheses as to why they occur.
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