
EE C128 / ME C134 Fall 2020 Lab 6a UC Berkeley

Lab 6a: Pole Placement for the Inverted Pendulum

“Idiot. Above her head was the only stable place in the cosmos, the only refuge from the damnation of the

Panta Rei, and she guessed it was the Pendulum’s business, not hers.” – Umberto Eco (from Foucault’s

Pendulum)

1 Objectives
The objective of this lab is to achieve simultaneous control of both the angular position of the pendulum

and horizontal position of the cart on the track using full-state feedback. We will be considering small

angle perturbations and sine wave reference tracking of the cart position. Note that the system is a SIMO

– a Single Input Multiple Output – system, since we are trying to control both the position of the cart

and the angle of the pendulum by using only the motor voltage.

2 Theory
The setup consists of a pendulum attached to the movable cart from Labs 3 and 4. The free body

diagram of this setup is shown in Figure 1. We ignore friction and assume that the mass of the rod is

uniformly distributed, e.g. its center of mass is located at the center of the rod, Lp = L/2. N and P

are the horizontal and vertical components, respectively, of the reaction force between the cart and the

pendulum. The parameter values of the physical system are given in Table 1 in the Appendix.

Figure 1: Free body diagram of the inverted pendulum setup (ignoring friction)

Rev. 1.0, November 9, 2020 1 of 7



EE C128 / ME C134 Fall 2020 Lab 6a UC Berkeley

3 Pre-Lab

3.1 Equations of Motion of the Mechanical System

Under the small-angle approximation sin θ ≈ θ and cos θ ≈ 1, derive the equations of motion (1) and (2)

of the inverted pendulum-cart system. In (1), Fa is the force exerted on the cart by the motor.

(M +m) ẍ+mLpθ̈ = Fa (1)

mLpẍ+
4mL2

p

3
θ̈ −mgLpθ = 0 (2)

One way of doing this is by considering the free-body diagrams of the cart and the pendulum separately

and writing their respective equations of motion.

Hint: Consider the following force/torque balance equations: horizontal acceleration on the cart, accel-

eration of the center of mass of the pendulum, and torsion of the pendulum. An easy way to analyze

the torque equation for the pendulum is to consider its motion as observed from the frame of the cart.

However, this will introduce a ‘fictitious’ force, known as D’Alembert’s effect. The associated free body

diagram of the cart and the pendulum are given in Figure 2 and Figure 3, respectively. Apply Newton’s

laws to obtain the required equations.
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Figure 2: Free body diagram of the cart (ignoring friction; normal force not depicted)
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Figure 3: Free body diagram of the pendulum (ignoring friction; the mẍ vector will appear in the torsion
equation due to D’Alembert’s effect)
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3.2 Full System Dynamics of Linearized System

1. Use the motor dynamics derived in Lab 3 (in the form Fa = f(V, x, ẋ)) and substitute them into

the linearized cart-pendulum dynamics from the previous section to obtain the complete system

dynamics. The outputs of interest for us are x, the position of the cart, and θ, the pendulum angle.

The control input available is V , the voltage applied to the motor. Thus, our system is a 1-input,

2-output system (SIMO).

2. Now derive the state-space model (A, B, C and D matrices) for the complete system. Use x =[
x ẋ θ θ̇

]T
as your state vector. Make sure you do this derivation symbolically. Your A and B

matrix should be of the following form:

A =


0 a12 0 0

0 a22 a23 0

0 0 0 a34

0 a42 a43 0

 B =


0

b2

0

b4

 (3)

Once you have the expressions for your state space representation, use a MATLAB script file to plug

in your values. This will make things much easier if parameters need to be adjusted.

3.3 Analysis and Controller Design

1. Determine the eigenvalues of the state matrix A and the poles of the state-space representation. Is

the open-loop system internally stable? Is it BIBO stable? (for this part, you can use the MATLAB

command eig).

2. Simulate the output response of the system for a step input in the motor voltage. What would you

expect to happen to x and θ in the physical system (assuming infinite track length)? What are the

discrepancies between the simulation and the physical system? Why might be the reasons for these

discrepancies?

3. We will use a full state-feedback controller to achieve the desired performance specifications. For

the purpose of design, we assume that all the state variables are available for measurement and can

use them for feedback (i.e. the entire state vector x is known). The full-state feedback controller is

u = −Kx. The gain matrix K is chosen such that the closed-loop eigenvalues lie at some desired

values. These desired values of the eigenvalues are found based on the performance specifications

desired to be achieved. We would like our closed-loop eigenvalues to lie at s1,2 = −2.0 ± 10j and

s3,4 = −1.6 ± 1.3j. In lecture you will discuss design techniques for determining these values. For

the purpose of this lab we will assume them given.

(a) The feedback gain matrix K is of the form K = [k1 k2 k3 k4]. The closed-loop system matrix

is given by AK = A−BK. Using your A and B matrices (with the values plugged in) from (3),

compute the matrix AK as a function of the ki.

(b) Compute the characteristic polynomial P (K; s) = det(sI −AK) of the closed-loop system as a

function of k1 through k4.

(c) Compute the desired characteristic polynomial Pdes(s) =
∏4

i=1(s−si) determined by the desired

locations of the closed-loop poles given above.
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(d) Comparing the coefficients of P (K; s) and P (s), determine the system of linear equations that

the gains k1, . . . , k4 have to satisfy. Plug in numerical values and use MATLAB to solve for K.

(e) Now verify the result you obtained for K using MATLAB. You may use the acker or place

commands for pole placement.

4. With input u = K(r−x), the dynamics of the closed-loop system are ẋ = Ax+Bu = AKx+BKr,

where r is your reference input. Observe that the reference input has the same dimension as the

system state. Using the calculated gain matrix K and MATLAB, calculate the closed loop transfer

function from the first component in the reference r (position reference input) to the output x (the

position of the cart). Plot the Bode plot of this transfer function. You should notice that the DC

gain for this transfer function is unity.

Rev. 1.0, November 9, 2020 4 of 7



EE C128 / ME C134 Fall 2020 Lab 6a UC Berkeley

4 Lab
During this lab, you will implement your state-feedback controller from the PreLab and run it on the

actual hardware. Make sure to save all the models and script files used and attach them to your lab

report submission (don’t forget to make all gain block values visible!).

4.1 Implementing the Controller in Simulink

Implement the state-feedback controller with the lab_6_pseudo_hardware_library.slx provided to

you. Here is a review of some of the blocks you will use:

• Cart with Pendulum block: The input is in volts, and the outputs are the encoder values for the cart

wheel and cart’s pendulum. Remember, these are not in meters nor radians, you need to convert

these! If the pendulum exceeds the track limits (−0.5 m to 0.5 m), the simulation will stop.

• dx/dt derivative blocks: The encoders only provide measurements for x and θ. We will need to

approximate ẋ and θ̇ in order to perform full state feedback. In this lab, we will use the derivative

blocks for this (taking numerical derivatives should generally be AVOIDED). In one of the following

labs, you will build an observer and estimate the ẋ and θ̇ from the measurements of ẋ and θ̇ alone.

• Mux and Demux blocks: This will help keep your diagram tidy. You can combine all four signals

(x, ẋ, θ, θ̇) into a “vector” signal with the mux block, and break them out with the demux block.

• Gain block: You can use a single gain block to implement the matrix K. Change the “multiplication”

option from “element-wise” to “matrix”.

• Scopes and “To Workspace” blocks: Don’t forget to instrument your system to allow you to save

data for your lab report.

Gear Protection In order to prevent the gear from slipping, you must put a saturation block before

the Analog Output block. You have two choices:

• a conventional saturation block, set to ±6V as in Lab 3 and 4

• An Embedded MATLAB code block use the following code:

1 function [u sat,max lim,min lim]= fcn(xdot,u)

2 % Setting the bounds

3 max lim = min(8,max(4,10*xdot+5));

4 min lim = min(−4,max(−8,10*xdot−5));

5 % Dynamic Saturation

6 u sat = max(min lim,u);

7 u sat = min(max lim,u sat);

8 end

You must connect this block to the ẋ signal as well as the control signal for saturation. It applies

different bounds depending on ẋ: once the cart is moving, it allows higher “forward” voltages, while

prohibiting big “reverse” voltages. The u sat output is the saturated signal, while max lim and

min lim allow you to plot/analyze the limits.
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Units Watch your units. Everything in this system should match the units you used for your state-space

derivation. When in doubt, always work with SI units.

4.2 Running the Controller on the Hardware

1. Run the controller on the hardware (with reference r set to r = [0 0 0 0]T ) and make sure it balances.

2. With the pendulum balancing, manually apply small perturbations to the pendulum and check the

response. Make sure to start the system with the cart in the center of the track, so there is enough

space for the controller to move the cart and “catch” the pendulum.

(a) Unfortunately we cannot poke the pendulum, instead input a step for the position reference of

10 cm 5 seconds after initializing the simulation (we want to allow the transients to die off).

How does the controller actuate the cart (run the simulation a few times to get a general feel

for the response)? Hint: note what happens to the pendulum angles first. Why does the system

respond like this?

(b) Plot the variation of the cart and pendulum position with time for these 10 cm step inputs.

Comment on the controller’s general performance. Why does the hardware continue to oscillate

about the equilibrium point?

3. Introduce a sine wave reference signal and and analyze the results. Your reference input will be

r =
[
Msinωt 0 0 0

]T
. Start with a reasonable amplitude (M ≈ 0.1 m), and use frequencies

ω = 1, 2, 5 rad/s. Check your response and include plots of cart position, cart velocity and pendulum

angle in your report.

(a) Calculate the gain and phase for each of the frequencies in your frequency response (ignoring the

offset from the hardware response). Locate these frequencies on the Bode plot from Part 3.3.4

of your Pre-Lab and compare the results. Do your values match for each frequency? If not,

explain possible causes for the difference.

(b) Slightly change the position of the desired closed-loop poles. Try a couple of different values

and run the resulting controllers on the hardware. Again include plots of cart position, cart

velocity and pendulum angle in your report. Discuss how the changes in the position of the

poles affect the behavior of the system. You do not need to repeat part 3a.

4. Plot the cart velocity ẋ and the pendulum’s angular velocity θ̇, which are obtained by numerically

differentiating the signals x and θ, respectively. Comment on the quality of the obtained signals.
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A System Parameters

Parameter Value Description

439.6 counts/cm Resolution of the cart position encoder

651.9 counts/rad Resolution of the angle encoder

M 0.94 kg Mass of cart and motor

m 0.230 kg Mass of pendulum

Lp 0.3302 m Pendulum distance from pivot to center of mass

Ic mL2
p/3 Moment of inertia of pendulum about its center

Ie 4mL2
p/3 Moment of inertia of pendulum about its end

Kt 7.67 · 10−3 Nm/A Motor torque constant

Km 7.67 · 10−3 Vs/rad Motor back EMF constant

Kg 3.71 Motor gearbox ratio

Rm 2.6 Ω Motor winding resistance

r 6.36 · 10−3 m Radius of motor gear

Jm 3.9 · 10−7 kg m2 Motor moment of inertia

Table 1: Parameters of the inverted pendulum setup
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