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Cayley-Hamilton Theorem
Every square matrix A satisfies its own characteristic equation:
∆(A) = 0
where the characteristic equation (aka characteristic polynomial) is given by:
∆(λ) = |λI −A| = λn + cn−1λ

n−1 + cn−2λ
n−2 + ...c1λ+ c0 = 0.

Proof (For case when A is similar to a diagonal matrix, i.e. for A ∈ <n×n with A = PΛP−1 where Λ is
a diagonal matrix with elements on the diagonal λ1, λ2, ...λn. )

Substituting A in the characteristic polynomial, we have

∆(A) = An + cn−1A
n−1 + cn−2A

n−2 + ...c1A+ c0I (1)

Noting that Ak = PΛkP−1, then

∆(A) = P [Λn + cn−1Λn−1 + cn−2Λn−2 + ...c1Λ + c0I]P−1. (2)

Since Λ is diagonal, the typical i, i term is given by

∆(λi) = |λiI −A| = λni + cn−1λ
n−1
i + cn−2λ

n−2
i + ...c1λi + c0 = 0.

Where the sum is zero because λi is a root of the characteristic polynomial. Thus ∆(A) = P [0]P−1 = [0] 2.

Matrix Exponential

Recall series form for eAt = I + At + A2 t2

2! + A3 t3

3! + .... But from Cayley-Hamilton, we know that since
∆(A) = 0 then −An = cn−1A

n−1 + cn−2A
n−2 + ...c1A + c0I . And then all higher powers than An can be

expressed in terms of a linear sum of I, A,A2, ..., An−1.
Then

eAt = α0(t)I + α1(t)A+ ...αn−1(t)An−1 = R(A)
where for a given t, R(A) is a polynomial of degree n− 1,
and αi are found by solving eλit = α0(t) + α1(t)λi + ...αn(t)λni .

Example of using C-H for matrix exponential. Given

A =

[
1 0
0 2

]
(3)

The matrix exponential can be calculated easily using Laplace Transform:

eAt = L−1[sI −A]−1 =

[
et 0
0 e2t

]
. (4)

The matrix exponential can alternatively be calculated by Cayley-Hamilton: eAt = α0(t)I + α1(t)A.
The functions αi(t) are found using λ1 = 1, λ2 = 2 by solving

eλ1t = et = α0(t) + 1α1(t) (5)

eλ2t = e2t = α0(t) + 2α1(t) (6)

(7)

Thus α1(t) = e2t − et and α0(t) = 2et − e2t. Finally,

eAt = (2et − e2t)
[

1 0
0 1

]
+ (e2t − et)

[
1 0
0 2

]
=

[
et 0
0 e2t

]
(8)
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Controllability
Assume that ẋ = Ax +Bu is completely controllable. Recall that

x(t) = eA(t−to)x(to) +

∫ t

to

eA(t−τ)Bu(τ)dτ. (9)

Since by assumption the system is controllable, we can choose a final time t1 such that x(t1) = 0 with
initial condition x(0) = x0 with to = 0. So by eqn( 9) we have

−xo =

∫ t1

0

e−AτBu(τ)dτ. (10)

By Cayley-Hamilton, we can express e−Aτ as a polynomial in A:

e−Aτ = α0(τ)I + α1(τ)A+ α2(τ)A2 + ...+ αn−1(τ)An−1 =

n−1∑
j=0

Ajαj(τ). (11)

If we substitute eqn( 11) into eqn( 10) we obtain

−xo =

n−1∑
j=0

AjB

∫ t1

0

αj(τ)u(τ)dτ. (12)

Note that
∫ t1
0
αj(τ)u(τ)dτ is a constant. Define vj =

∫ t1
0
αj(τ)u(τ)dτ . Then eqn. (12) can be expressed as

a matrix multiply:

−xo =
[
B|AB|A2B|...|An−1B

] 
v0
v1
...
vn−1

 . (13)

Define the controllability matrix C =
[
B|AB|A2B|...|An−1B

]
. Note that if state space is of dimension n, then

eqn( 13) will only be satisfiable for all xo if rank (C) = n. Thus the necessary condition for controllability
is shown. �
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