Lecture \#19 Controllability (Oct. 25, Oct. 30, 2018) v3 Ref: K. Ogata, Modern Control Engineering 2002.

Cayley-Hamilton Theorem

Every square matrix A satisfies its own characteristic equation:
$\Delta(A)=0$
where the characteristic equation (aka characteristic polynomial) is given by:
$\Delta(\lambda)=|\lambda I-A|=\lambda^{n}+c_{n-1} \lambda^{n-1}+c_{n-2} \lambda^{n-2}+\ldots c_{1} \lambda+c_{0}=0$.
Proof (For case when A is similar to a diagonal matrix, i.e. for $A \in \Re^{n \times n}$ with $A=P \Lambda P^{-1}$ where Λ is a diagonal matrix with elements on the diagonal $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$.)

Substituting A in the characteristic polynomial, we have

$$
\begin{equation*}
\Delta(A)=A^{n}+c_{n-1} A^{n-1}+c_{n-2} A^{n-2}+\ldots c_{1} A+c_{0} I \tag{1}
\end{equation*}
$$

Noting that $A^{k}=P \Lambda^{k} P^{-1}$, then

$$
\begin{equation*}
\Delta(A)=P\left[\Lambda^{n}+c_{n-1} \Lambda^{n-1}+c_{n-2} \Lambda^{n-2}+\ldots c_{1} \Lambda+c_{0} I\right] P^{-1} \tag{2}
\end{equation*}
$$

Since Λ is diagonal, the typical i, i term is given by

$$
\Delta\left(\lambda_{i}\right)=\left|\lambda_{i} I-A\right|=\lambda_{i}^{n}+c_{n-1} \lambda_{i}^{n-1}+c_{n-2} \lambda_{i}^{n-2}+\ldots c_{1} \lambda_{i}+c_{0}=0
$$

Where the sum is zero because λ_{i} is a root of the characteristic polynomial. Thus $\Delta(A)=P[0] P^{-1}=[0]$

Matrix Exponential

Recall series form for $e^{A t}=I+A t+A^{2} \frac{t^{2}}{2!}+A^{3} \frac{t^{3}}{3!}+\ldots$. But from Cayley-Hamilton, we know that since $\Delta(A)=0$ then $-A^{n}=c_{n-1} A^{n-1}+c_{n-2} A^{n-2}+\ldots c_{1} A+c_{0} I$. And then all higher powers than A^{n} can be expressed in terms of a linear sum of $I, A, A^{2}, \ldots, A^{n-1}$.

Then
$e^{A t}=\alpha_{0}(t) I+\alpha_{1}(t) A+\ldots \alpha_{n-1}(t) A^{n-1}=R(A)$
where for a given $t, R(A)$ is a polynomial of degree $n-1$,
and α_{i} are found by solving $e^{\lambda_{i} t}=\alpha_{0}(t)+\alpha_{1}(t) \lambda_{i}+\ldots \alpha_{n}(t) \lambda_{i}^{n}$.
Example of using C-H for matrix exponential. Given

$$
A=\left[\begin{array}{ll}
1 & 0 \tag{3}\\
0 & 2
\end{array}\right]
$$

The matrix exponential can be calculated easily using Laplace Transform:

$$
e^{A t}=\mathcal{L}^{-1}[s I-A]^{-1}=\left[\begin{array}{cc}
e^{t} & 0 \tag{4}\\
0 & e^{2 t}
\end{array}\right] .
$$

The matrix exponential can alternatively be calculated by Cayley-Hamilton: $e^{A t}=\alpha_{0}(t) I+\alpha_{1}(t) A$. The functions $\alpha_{i}(t)$ are found using $\lambda_{1}=1, \lambda_{2}=2$ by solving

$$
\begin{align*}
e^{\lambda_{1} t}=e^{t} & =\alpha_{0}(t)+1 \alpha_{1}(t) \tag{5}\\
e^{\lambda_{2} t}=e^{2 t} & =\alpha_{0}(t)+2 \alpha_{1}(t) \tag{6}
\end{align*}
$$

Thus $\alpha_{1}(t)=e^{2 t}-e^{t}$ and $\alpha_{0}(t)=2 e^{t}-e^{2 t}$. Finally,

$$
e^{A t}=\left(2 e^{t}-e^{2 t}\right)\left[\begin{array}{ll}
1 & 0 \tag{8}\\
0 & 1
\end{array}\right]+\left(e^{2 t}-e^{t}\right)\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
e^{t} & 0 \\
0 & e^{2 t}
\end{array}\right]
$$

Controllability

Assume that $\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}$ is completely controllable. Recall that

$$
\begin{equation*}
\mathbf{x}(t)=e^{A\left(t-t_{o}\right)} \mathbf{x}\left(t_{o}\right)+\int_{t_{o}}^{t} e^{A(t-\tau)} B u(\tau) d \tau . \tag{9}
\end{equation*}
$$

Since by assumption the system is controllable, we can choose a final time t_{1} such that $\mathbf{x}\left(t_{1}\right)=\mathbf{0}$ with initial condition $\mathbf{x}(0)=\mathbf{x}_{\mathbf{0}}$ with $t_{o}=0$. So by eqn (9) we have

$$
\begin{equation*}
-\mathbf{x}_{\mathbf{o}}=\int_{0}^{t_{1}} e^{-A \tau} B u(\tau) d \tau . \tag{10}
\end{equation*}
$$

By Cayley-Hamilton, we can express $e^{-A \tau}$ as a polynomial in A :

$$
\begin{equation*}
e^{-A \tau}=\alpha_{0}(\tau) I+\alpha_{1}(\tau) A+\alpha_{2}(\tau) A^{2}+\ldots+\alpha_{n-1}(\tau) A^{n-1}=\sum_{j=0}^{n-1} A^{j} \alpha_{j}(\tau) . \tag{11}
\end{equation*}
$$

If we substitute eqn(11) into eqn(10) we obtain

$$
\begin{equation*}
-\mathbf{x}_{\mathbf{o}}=\sum_{j=0}^{n-1} A^{j} B \int_{0}^{t_{1}} \alpha_{j}(\tau) u(\tau) d \tau \tag{12}
\end{equation*}
$$

Note that $\int_{0}^{t_{1}} \alpha_{j}(\tau) u(\tau) d \tau$ is a constant. Define $v_{j}=\int_{0}^{t_{1}} \alpha_{j}(\tau) u(\tau) d \tau$. Then eqn. (12) can be expressed as a matrix multiply:

$$
-\mathbf{x}_{\mathbf{o}}=\left[B|A B| A^{2} B|\ldots| A^{n-1} B\right]\left[\begin{array}{c}
v_{0} \tag{13}\\
v_{1} \\
\ldots \\
v_{n-1}
\end{array}\right] .
$$

Define the controllability matrix $\mathbb{C}=\left[B|A B| A^{2} B|\ldots| A^{n-1} B\right]$. Note that if state space is of dimension n, then eqn(13) will only be satisfiable for all \mathbf{x}_{o} if $\operatorname{rank}(\mathbb{C})=n$. Thus the necessary condition for controllability is shown.

