Lecture \#23 Linear Quadratic Regulator (Nov. 8, 2018) v. 1.01 (R. Fearing)
Ref: K. Ogata, Modern Control Engineering 2002.
Here the infinite horizon, continuous time, Linear Quadratic Regulator is derived. A cost function which is Quadratic in control and error is used. The considered system is Linear and uses a linear state feedback control $u=-K x$. The Regulator problem considers $\mathbf{x}(t) \rightarrow \mathbf{0}$. Infinite horizon means considering the total cost as $t \rightarrow \infty$.

Given a system in state-space form:

$$
\begin{equation*}
\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u} \quad y=C \mathbf{x} \tag{1}
\end{equation*}
$$

Define instantaneous cost of control $\mathbf{u}(t)^{T} R \mathbf{u}(t)$, instantaneous cost of output error $\mathbf{y}(t)^{T} Q \mathbf{y}(t)$. $Q, R$ are positive semidefinite, that is $\mathbf{x}^{T} Q \mathbf{x} \geq 0 \quad \forall \mathbf{x}$. Assume $Q=Q^{T}$ and $R=R^{T}$.

Define Quadratic cost

$$
\begin{equation*}
J=\int_{0}^{\infty}\left(y^{T} Q y+u^{T} R u\right) d t \tag{2}
\end{equation*}
$$

To combine (1) and (2), we introduce a "cost of state $x$ ", $x^{T} P x$, where $P$ is positive semidefinite (also $P=P^{T}$ ) and where $P$ will be derived. The difference between "cost" of final and initial states is given by

$$
\begin{equation*}
x^{T}(\infty) P x(\infty)-x^{T}(0) P x(0)=-x^{T}(0) P x(0)=\int_{0}^{\infty} \frac{d}{d t}\left(x^{T} P x\right) d t \tag{3}
\end{equation*}
$$

using the assumption of a stable regulator, thus $x^{T}(\infty) P x(\infty) \rightarrow 0$.
Now adding Eq.(2) and Eq.(3) gives

$$
\begin{equation*}
J-x^{T}(0) P x(0)=\int_{0}^{\infty}\left(y^{T} Q y+u^{T} R u\right)+\frac{d}{d t}\left(x^{T} P x\right) d t=\int_{0}^{\infty}\left(y^{T} Q y+u^{T} R u\right)+\dot{x}^{T} P x+x^{T} P \dot{x} d t \tag{4}
\end{equation*}
$$

Using (1) we get:

$$
\begin{equation*}
J-x^{T}(0) P x(0)=\int_{0}^{\infty} x^{T} C^{T} Q C x+u^{T} R u+\left(x^{T} A^{T}+u^{T} B^{T}\right) P x+x^{T} P(A x+B u) d t \tag{5}
\end{equation*}
$$

Grouping quadratic terms

$$
\begin{equation*}
J-x^{T}(0) P x(0)=\int_{0}^{\infty} x^{T}\left[C^{T} Q C+A^{T} P+P A\right] x+u^{T} R u+u^{T} B^{T} P x+x^{T} P B u d t \tag{6}
\end{equation*}
$$

## Algebraic Riccati Equation (A.R.E.)

For a given $N$ and since $A, C, Q$ are known, the A.R.E. $P N P=C^{T} Q C+P A+A^{T} P$ can be solved for $P$, e.g. using Matlab care(). ( $N$ is to be determined below.)

Substituting $P N P$ in (6), we get:

$$
\begin{equation*}
J-x^{T}(0) P x(0)=\int_{0}^{\infty} x^{T}[P N P] x+u^{T} R u+u^{T} B^{T} P x+x^{T} P B u d t \tag{7}
\end{equation*}
$$

Considering that for optimal linear state feedback, $u(t) \rightarrow-K x$, the instantaneous "cost" of the difference between $u$ and $K x$ can be given by $(u+K x)^{T} R(u+K x)=0$. Let $K=R^{-1} B^{T} P$. Then

$$
\begin{align*}
(u+K x)^{T} R(u+K x)=0 & =x^{T} K^{T} R K x+u^{T} R u+u^{T} R K x+x^{T} K^{T} R u  \tag{8}\\
& =x^{T} P^{T} B R^{-1} B^{T} P x+u^{T} R u+u^{T} B^{T} P x+x^{T} P B u  \tag{9}\\
& =x^{T} P^{T} N P x+u^{T} R u+u^{T} B^{T} P x+x^{T} P B u \tag{10}
\end{align*}
$$

where $N=B R^{-1} B^{T}$. Noting that Eq.(10) is identical to the term inside the integral in Eq.(7), which is 0 for $u=-K x$, then the minimum cost is:

$$
\begin{equation*}
J=x^{T}(0) P x(0) \tag{11}
\end{equation*}
$$

where $P$ is solution of $C^{T} Q C+P A+A^{T} P-P B R^{-1} B^{T} P=0$, the algebraic Riccati equation.

