1. (15 pts) Steady state error for unity feedback (Nise 7.4)
For the system in Fig. 1, let \(G_1(s) = \frac{k}{s^2} \), \(G_2(s) = \frac{s+1}{(s+3)(s+4)} \) and \(H(s) = 1 \). \(D(s) = 0 \). \(E = R - C \).

[3pts] a. What is the system type?
[4pts] b. What is the appropriate static error constant?
[3pts] c. What is the value of the appropriate static error constant?
[5pts] d. What is the steady state error for a unit step input? For a unit ramp input? For \(r(t) = t^2 u(t) \)?

2. (20 pts) Steady state error (Nise 7.8)
[a) Find steady state error for \(r(t) \) a unit step input, using input substitution.
[b) Find steady state error for \(r(t) \) a unit ramp input, using input substitution.

Given system:
\[
\dot{x} = Ax + Bu = \begin{bmatrix} 0 & 1 & 0 \\ -5 & -9 & 7 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r, \text{ and } y = [1 \ 0 \ 0]x
\]

3. (15 pts) Steady state error (Nise 7)
Consider a roll-to-roll fabrication system where flat material passes through processing steps at constant velocity. Every roller must have the same tangential velocity to prevent the material tearing. Consider a plant \(G_2(s) = \frac{1}{s^2 + 2s + 1} \) with proportional controller \(G_1(s) = k_p \) which tracks a reference angle \(r(t) = \theta(t) \), where \(r(t) = 100t^2 u(t) \) and \(H(s) = 1 \).

[5pts] a. For the given \(r(t) \), find the steady state error.
[10pts] b. For the given \(r(t) \), find a new \(G_1(s) \) which will have zero steady state error. (Hint: add something else in the controller.)

4. (30 pts) Root locus sketching (Nise 8.6)
For each part below with open loop transfer function \(G(s) \) in unity gain feedback (Fig.2):
[i] i) Apply root locus rules (1-8): specify real axis segments, asymptotes and real axis intercept, break-away and break-in locations on real axis, and angle of departure from complex poles.
[ii] ii) Find \(j\omega \) axis intercepts if any.
[iv] iv) Specify range of \(k \) for stability.
[v] v) Verify your root locus using MATLAB.

a) \(G(s) = \frac{k(s+10)}{(s+5)(s+2)} \)

b) \(G(s) = \frac{k(s+10)}{(s^2+4s+8)(s+20)} \)

c) \(G(s) = \frac{k(s+10)}{(s^2+4s+8)(s^2+8s+20)(s+20)} \)

5. (20 pts) Generalized Root locus (Nise 8.8)
Given the unity gain feedback system in Fig. 2, where
\[
G(s) = \frac{100(s + \alpha)(s + 20)}{s(s + 1)(s + 10)}
\]

[4] a) Determine the characteristic equation for the closed loop system.
[16] b) Sketch the root locus with respect to positive values of \(\alpha \), showing direction in which \(\alpha \) increases on the locus.