Announcements

• HW9 is due now.
Question: how does this curve look for reverse bias?
PN Junction Review: Current Profile

\[J_{\text{total}} \]

\[J_{pN} \quad J_{nP} \]

N-side 0 P-side

\[J_{\text{total}} \]

\[J_{nN} \quad J_{pP} \]

N-side 0 P-side

x
Qualitative Solution - Definitions

\[N_E = N_{AE} \]
\[D_E = D_N \]
\[\tau_E = \tau_n \]
\[L_E = L_N \]
\[n_{E0} = n_{p0} = n_i^2/N_E \]

\[N_B = N_{DB} \]
\[D_B = D_P \]
\[\tau_B = \tau_p \]
\[L_B = L_P \]
\[p_{B0} = p_{n0} = n_i^2/N_B \]

\[N_C = N_{AC} \]
\[D_C = D_N \]
\[\tau_C = \tau_n \]
\[L_C = L_N \]
\[n_{C0} = n_{p0} = n_i^2/N_C \]
Emitter Region Formulation

- Diffusion equation:
 \[0 = D_E \frac{d^2 \Delta n_E}{dx'^2} - \frac{\Delta n_E}{\tau_E} \]
- Boundary Conditions
 \[\Delta n_E (x'' \to \infty) = 0 \]
 \[\Delta n_E (x'' = 0) = n_{E0} (e^{qV_{EB}/kT} - 1) \]
Base Region Formulation

- Diffusion equation:
 \[0 = D_B \frac{d^2 \Delta n_B}{dx^2} - \frac{\Delta p_B}{\tau_B} \]

- Boundary Conditions
 \[\Delta p_B(0) = p_{B0} \left(e^{qV_{EB}/kT} - 1 \right) \]
 \[\Delta p_B(W) = p_{B0} \left(e^{qV_{CB}/kT} - 1 \right) \]
Collector Region Formulation

- Diffusion equation:
 \[0 = D_C \frac{d^2 \Delta n_C}{dx^2} - \frac{\Delta n_C}{\tau_C} \]

- Boundary Conditions
 \[\Delta n_C(x' \to \infty) = 0 \]
 \[\Delta n_C(x' = 0) = n_{C0} \left(e^{qV_{CB}/kT} - 1 \right) \]
Current Formulation

\[I_{En} = -qAD_E \frac{d\Delta n_E}{dx''} \bigg|_{x''=0} \]

\[I_{Ep} = -qAD_B \frac{d\Delta p_B}{dx} \bigg|_{x=0} \]

\[I_{Cp} = -qAD_B \frac{d\Delta p_B}{dx} \bigg|_{x=W} \]

\[I_{Cn} = qAD_C \frac{d\Delta n_C}{dx'} \bigg|_{x'=0} \]
Emitter Region Solution

• The solution of: \(0 = D_E \frac{d^2 \Delta n_E}{dx''^2} - \frac{\Delta n_E}{\tau_E} \)

is:
\[\Delta n_E(x'') = A_1 e^{-x''/L_E} + A_2 e^{x''/L_E} \]

• From the boundary conditions:
\[\Delta n_E(x'' \to \infty) = 0 \]
\[\Delta n_E(x'' = 0) = n_{E0}(e^{qV_{EB}/kT} - 1) \]

we have:
\[\Delta n_E(x'') = n_{E0}(e^{qV_{EB}/kT} - 1)e^{-x''/L_E} \]

and:
\[I_{En} = -qA \frac{D_E}{L_E} n_{E0}(e^{qV_{EB}/kT} - 1) \]
Collector Region Solution

• The solution of: \[0 = D_C \frac{d^2 \Delta n_C}{dx^2} - \frac{\Delta n_C}{\tau_C} \]
is:
 \[\Delta n_C(x') = A_1 e^{-x'/L_C} + A_2 e^{x'/L_C} \]

• From the boundary conditions:
 \[\Delta n_C(x' \to \infty) = 0 \]
 \[\Delta n_C(x' = 0) = n_{C0}(e^{qV_{CB}/kT} - 1) \]
we have:
 \[\Delta n_C(x') = n_{C0}(e^{qV_{CB}/kT} - 1)e^{-x'/L_C} \]
and:
 \[I_{Cn} = -qA \frac{D_C}{L_C} n_{C0}(e^{qV_{CB}/kT} - 1) \]
Base Region Solution

- The solution of: \(0 = D_B \frac{d^2 \Delta n_B}{dx^2} - \frac{\Delta p_B}{\tau_B} \)

 is:

 \[
 \Delta p_B(x) = A_1 e^{-x/L_B} + A_2 e^{x/L_B}
 \]

- From the boundary conditions:

 \[
 \Delta p_B(0) = p_{B0} \left(e^{qV_{EB}/kT} - 1 \right)
 \]

 \[
 \Delta p_B(W) = p_{B0} \left(e^{qV_{CB}/kT} - 1 \right)
 \]

 we have:

 \[
 \Delta p_B(x) = p_{B0} \left(e^{qV_{EB}/kT} - 1 \right) \left(\frac{e^{(W-x)/L_B} - e^{-(w-x)/L_B}}{e^{W/L_B} - e^{-W/L_B}} \right)
 \]

 \[
 + p_{B0} \left(e^{qV_{CB}/kT} - 1 \right) \left(\frac{e^{x/L_B} - e^{-x/L_B}}{e^{W/L_B} - e^{-W/L_B}} \right)
 \]
Base Region Solution (cont’d)

• Now, we know: \(\sinh(\xi) = \frac{e^\xi - e^{-\xi}}{2} \)

• Therefore, we can write:

\[
\Delta p_B(x) = p_{B0}(e^{qV_{EB}/kT} - 1)\left(\frac{e^{(W-x)/L_B} - e^{-(w-x)/L_B}}{e^W/L_B - e^{-W/L_B}}\right)
+ p_{B0}(e^{qV_{CB}/kT} - 1)\left(\frac{e^{x/L_B} - e^{-x/L_B}}{e^W/L_B - e^{-W/L_B}}\right)
\]

as:

\[
\Delta p_B(x) = p_{B0}(e^{qV_{EB}/kT} - 1)\frac{\sinh\left(\frac{(W-x)/L_B}{L_B}\right)}{\sinh\left(\frac{W}{L_B}\right)}
+ p_{B0}(e^{qV_{CB}/kT} - 1)\frac{\sinh\left(\frac{x/L_B}{L_B}\right)}{\sinh\left(\frac{W}{L_B}\right)}
\]
Base Region Solution (cont’d)

- Now, we know: \[\cosh(\xi) = \frac{e^\xi + e^{-\xi}}{2} \]
- Therefore, we have:

\[
I_{Ep} = qA \frac{D_B}{L_B} p_{B0} \left[\frac{\cosh(W/L_B)}{\sinh(W/L_B)} \left(e^{qV_{EB}/kT} - 1 \right) - \frac{1}{\sinh(W/L_B)} \left(e^{qV_{CB}/kT} - 1 \right) \right]
\]

and:

\[
I_{Cp} = qA \frac{D_B}{L_B} p_{B0} \left[\frac{1}{\sinh(W/L_B)} \left(e^{qV_{EB}/kT} - 1 \right) - \frac{\cosh(W/L_B)}{\sinh(W/L_B)} \left(e^{qV_{CB}/kT} - 1 \right) \right]
\]
Terminal Currents

- We know:

\[I_{En} = -qA \frac{D_E}{L_E} n_{E0} (e^{qV_{EB}/kT} - 1) \]

\[I_{Ep} = qA \frac{D_B}{L_B} p_{B0} \frac{\cosh(W/L_B)}{\sinh(W/L_B)} (e^{qV_{EB}/kT} - 1) - \frac{1}{\sinh(W/L_B)} (e^{qV_{CB}/kT} - 1) \]

\[I_{Cp} = qA \frac{D_B}{L_B} p_{B0} \frac{1}{\sinh(W/L_B)} (e^{qV_{EB}/kT} - 1) - \frac{\cosh(W/L_B)}{\sinh(W/L_B)} (e^{qV_{CB}/kT} - 1) \]

\[I_{Cn} = -qA \frac{D_C}{L_C} n_{C0} (e^{qV_{CB}/kT} - 1) \]

- Therefore:

\[I_E = qA \left[\left(\frac{D_E}{L_E} n_{E0} + \frac{D_B}{L_B} p_{B0} \frac{\cosh(W/L_B)}{\sinh(W/L_B)} \right) (e^{qV_{EB}/kT} - 1) - \left(\frac{D_B}{L_B} p_{B0} \frac{1}{\sinh(W/L_B)} \right) (e^{qV_{CB}/kT} - 1) \right] \]

\[I_C = qA \left[\left(\frac{D_B}{L_B} p_{B0} \frac{1}{\sinh(W/L_B)} \right) (e^{qV_{EB}/kT} - 1) - \left(\frac{D_C}{L_C} n_{C0} + \frac{D_B}{L_B} p_{B0} \frac{\cosh(W/L_B)}{\sinh(W/L_B)} \right) (e^{qV_{CB}/kT} - 1) \right] \]

Question: What is I_B?
Simplification

• In real BJTs, we make $W \ll L_B$ so that we have a high gain. Then, we note:
 \[
 \sinh(\xi) \rightarrow \xi \cdots \xi \ll 1 \\
 \cosh(\xi) \rightarrow 1 + \frac{\xi^2}{2} \cdots \xi \ll 1
 \]

• So, we have:
 \[
 \Delta p_B(x) \approx p_{B0} \left(e^{qV_{EB}/kT} - 1 \right) \left(1 - \frac{x}{W} \right) \\
 + p_{B0} \left(e^{qV_{CB}/kT} - 1 \right) \left(\frac{x}{W} \right)
 \]
Simplified Analysis

Consider the carrier distribution in a forward active pnp transistor

Question: why does the carrier concentration show linear dependence in the base?
Question:

• Plot carrier distribution profile for a BJT under cut-off.
Performance Parameters

\[\gamma = \frac{1}{1 + \frac{D_E}{D_B} \frac{N_B}{N_E} \frac{W}{L_E}} \]

\[\alpha_T = \frac{1}{1 + \frac{1}{2} \left(\frac{W}{L_B} \right)^2} \]

\[\alpha_{dc} = \frac{1}{1 + \frac{D_E}{D_B} \frac{N_B}{N_E} \frac{W}{L_E} + \frac{1}{2} \left(\frac{W}{L_B} \right)^2} \]

\[\beta_{dc} = \frac{1}{\frac{D_E}{D_B} \frac{N_B}{N_E} \frac{W}{L_E} + \frac{1}{2} \left(\frac{W}{L_B} \right)^2} \]
Base width modulation

When the reverse bias applied to the C-B junction increases, the C-B depletion width increases and W decreases. Thus, the collector current, I_C increases. This is also known as “Early Effect”. More prominent in narrow-base transistors.

![Graph showing base width modulation]

- I_C, V_{EC}
- Levels: 3 mA, 2 mA, 1 mA
Output resistance:

\[r_0 \equiv \left(\frac{\partial I_C}{\partial V_{CE}} \right)^{-1} = \frac{V_A}{I_C} \]

A large \(V_A \) (i.e. a larger \(r_o \)) is desirable for voltage gain.
How can we reduce the base-width modulation effect?

Base-Width Modulation by Collector Voltage

(N+ P N)
emitter base collector

V_{CE}

V_{BE}

W_{B1}
W_{B2}
W_{B3}

reduction of base width

$V_{CE1} < V_{CE2} < V_{CE3}$

(Depletion region in collector is not shown)

V_{CE}

V_{BE}

n'

x
The base-width modulation effect is reduced if we

(A) Increase the base width,
(B) Increase the base doping concentration, N_B, or
(C) Decrease the collector doping concentration, N_C.

Which of the above is the most acceptable action?