Lecture #22

OUTLINE
The MOS Capacitor
• Capacitance
• Effect of Oxide Charges

Reading: Course Reader (Part III, Chap. 2)

Review: Threshold Voltage

• For p-type Si (“NMOS”):
 \[V_T = V_{FB} + 2\psi_B + \sqrt{2qN_A \epsilon_{Si}(2\psi_B)} \frac{1}{C_{ox}} \]

• For n-type Si (“PMOS”):
 \[V_T = V_{FB} + 2\psi_B - \sqrt{2qN_D \epsilon_{Si}(2\psi_B)} \frac{1}{C_{ox}} \]
ψ_s and W_d vs. V_G (p-type Si)

ψ_s:

$$\psi_s = \frac{qN_a \epsilon_s}{2C_m} \left[\sqrt{1 + \frac{2C_m}{qN_a} (V_G - V_{FB})} - 1 \right]$$
(for $V_{FB} < V_G < V_T$)

W_d:

$$W_d = \frac{2\epsilon_m (2\psi_s)}{qN_a}$$
(for $V_{FB} < V_G < V_T$)

Total Charge Density in Si, Q_s

$$Q_{acc} = -C_m (V_G - V_{FB})$$

$$Q_{dep} = -qN_a W$$

$$Q_{inv} = -C_m (V_G - V_T)$$

$$Q_s = Q_{acc} + Q_{dep} + Q_{inv}$$
MOS Capacitance Measurement

- V_G is scanned slowly
- Capacitive current due to v_{ac} is measured

\[i_{ac} = C \frac{dv_{ac}}{dt} \]

\[C = \left| \frac{dQ_{GATE}}{dV_G} \right| = \left| \frac{dQ_s}{dV_G} \right| \]

C-V Meter MOS Capacitor

MOS C-V Characteristics (p-type Si)

\[C = \left| \frac{dQ_s}{dV_G} \right| \]

Ideal C-V curve:
Capacitance in Accumulation (p-type Si)

- As the gate voltage is varied, incremental charge is added/subtracted to/from the gate and substrate.
- The incremental charges are separated by the gate oxide.

\[C = \left| \frac{dQ_{acc}}{dV_G} \right| = C_{ox} \]

Flat-Band Capacitance

- At the flat-band condition, variations in \(V_G \) give rise to the addition/subtraction of incremental charge in the substrate, at a depth \(L_D \)

- \(L_D \) is the “extrinsic Debye Length”
 - characteristic shielding distance, or the distance where the electric field emanating from a perturbing charge falls off by a factor of \(1/e \)

\[
L_D = \frac{\varepsilon_{Si} kT}{q^2 N_A}
\]

\[
\frac{1}{C_{FB}} = \frac{1}{C_{ox}} + \frac{L_D}{\varepsilon_{Si}}
\]
Capacitance in Depletion (p-type Si)

- As the gate voltage is varied, the width of the depletion region varies.
 → Incremental charge is effectively added/subtracted at a depth W_d in the substrate.

\[C = \left| \frac{dQ_{dep}}{dV_G} \right| = \sqrt{\frac{1}{C_{ox}^2} + \frac{2(V_G - V_{FB})}{qN_A \varepsilon_{Si}}} \]

\[\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}} = \frac{1}{C_{ox}} + \frac{W_d}{\varepsilon_{Si}} \]

Capacitance in Inversion (p-type Si)

CASE 1: Inversion-layer charge can be supplied/removed quickly enough to respond to changes in the gate voltage.
 → Incremental charge is effectively added/subtracted at the surface of the substrate.

Time required to build inversion-layer charge = $2N_A \tau_o / n_i$, where $\tau_o =$ minority-carrier lifetime at surface

\[C = \left| \frac{dQ_{inv}}{dV_G} \right| = C_{ox} \]
Capacitance in Inversion (p-type Si)

CASE 2: Inversion-layer charge cannot be supplied/removed quickly enough to respond to changes in the gate voltage.

→ Incremental charge is effectively added/subtracted at a depth W_d in the substrate.

$$
\frac{1}{C} = \frac{1}{C_{ox}} + \frac{1}{C_{dep}} = \frac{1}{C_{ox}} + \frac{W_{dm}}{\varepsilon_{Si}} = \frac{1}{C_{ox}} + \frac{2(2\psi_B)}{qN_A\varepsilon_{Si}} \equiv \frac{1}{C_{min}}
$$

Supply of Substrate Charge (p-type Si)

Accumulation:
- Gate C_{ox}
- p-type Si

Depletion:
- Gate C_{ox}
- p-type Si

Inversion:
- Case 1
- DC and AC W_{dm}
- p-type Si

Case 2
Capacitor vs. Transistor C-V
(or LF vs. HF C-V)

p-type Si:

- MOS transistor at any f,
- MOS capacitor at low f, or quasi-static C-V
- MOS capacitor at high f

The quasi-static C-V characteristic is obtained by **slowly** ramping the gate voltage (< 0.1V/s), while measuring the gate current I_G with a very sensitive DC ammeter. C is calculated from $I_G = C \cdot \text{d}V_G/\text{d}t$.

Spring 2003

EE130 Lecture 22, Slide 13

Spring 2003

EE130 Lecture 22, Slide 14
Examples: C-V Characteristics

Does the QS or the HF-capacitor C-V characteristic apply?

1. MOS capacitor, $f=10\text{kHz}$.
2. MOS transistor, $f=1\text{MHz}$.
3. MOS capacitor, slow V_G ramp.
4. MOS transistor, slow V_G ramp.

Deep Depletion

- If V_G is scanned quickly, Q_{inv} cannot respond to the change in V_G. The increase in substrate charge density Q_s must then come from an increase in depletion charge density Q_{dep}

\[\Rightarrow \text{depletion depth } W_d \text{ increases as } V_G \text{ increases} \]

\[\Rightarrow C \text{ decreases as } V_G \text{ increases} \]
Parameter Extraction from C-V

From a single C-V measurement, we can extract much information about the MOS device.

• Suppose we know that the gate-electrode material is heavily doped n-type poly-Si ($\Phi_m=4.05\text{eV}$), and that the gate dielectric is SiO$_2$ ($\varepsilon_r=3.9$):
 - From $C_{\text{max}} = C_{\text{ox}}$ we determine the oxide thickness t_{ox}
 - From C_{min} and C_{ox} we determine substrate doping (by iteration)
 - From substrate doping and C_{ox} we calculate the flat-band capacitance C_{FB}
 - From the C-V curve, we can find $V_{\text{FB}} = V_{\text{G}}|_{C=C_{\text{FB}}}$
 - From Φ_m, Φ_S, C_{ox}, and V_{FB} we can determine Q_f

Example: Effect of Doping

• How would C-V characteristic change if substrate doping N_A were increased?
 - V_{FB}
 - V_T
 - C_{min}
Example: Effect of Oxide Thickness

- How would $C-V$ characteristic change if oxide thickness t_{ox} were decreased?
 - V_{FB}
 - V_T
 - C_{min}

Oxide Charges

In real MOS devices, there is always some charge in the oxide and at the Si/oxide interface.

- In the oxide:
 - Trapped charge Q_{ot}
 - High-energy electrons and/or holes injected into oxide
 - Mobile charge Q_M
 - Alkali-metal ions, which have sufficient mobility to drift in oxide under an applied electric field

- At the interface:
 - Fixed charge Q_F
 - Excess Si (?)
 - Trapped charge Q_{it}
 - Dangling bonds
Effect of Oxide Charges

- In general, charges in the oxide cause a shift in the gate voltage required to reach the threshold condition:

$$\Delta V_T = -\frac{1}{\varepsilon_{SiO_2}} \int_0^x x \rho_{ox} (x) dx$$

(x defined to be 0 at metal-oxide interface)

- In addition, they may alter the field-effect mobility of mobile carriers (in a MOSFET) due to Coulombic scattering

Fixed Oxide Charge Q_F

$$V_{FB} = \phi_{MS} - \frac{Q_F}{C_{ox}}$$
Determination of Q_F

Measure C-V characteristics of capacitors with different oxide thicknesses. Plot V_{FB} as a function of t_{ox}.

\[V_{FB} = \phi_{MS} - \frac{t_{ox}}{\varepsilon_{SiO_2}} Q_F \]

Mobile Ions

- Odd shifts in C-V characteristics were once a mystery:

\[\Delta V_{FB} = -\frac{Q_M}{C_{ox}} \]

- Source of problem: Mobile charge moving to/away from interface, changing charge centroid

Spring 2003 EE130 Lecture 22, Slide 23

Spring 2003 EE130 Lecture 22, Slide 24
Traps cause “sloppy” $C-V$ and also greatly degrade mobility in channel

$$\Delta V_G = -\frac{Q_{IT}(\psi_S)}{C_{ox}}$$