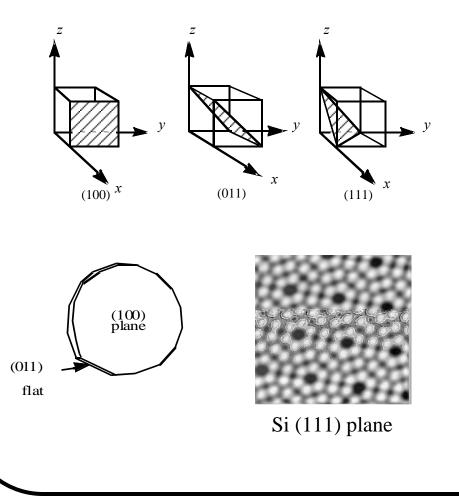
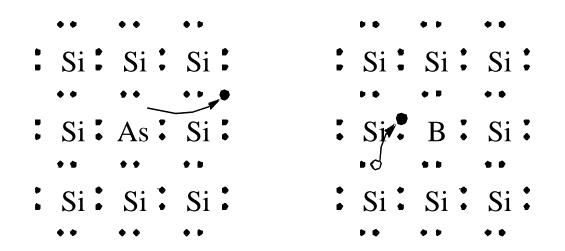

# Chapter 1 Electrons and Holes in Semiconductors


## 1.1 Silicon Crystal Structure

- *Unit cell* of silicon crystal is cubic.
- Each Si atom has 4 nearest neighbors.

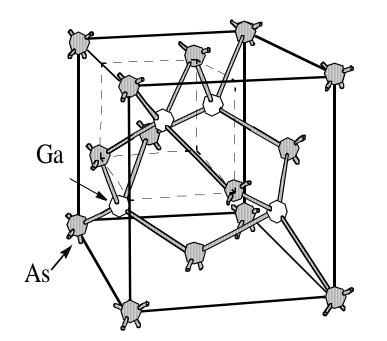


Semiconductor Devices for Integrated Circuits (C. Hu)


#### Silicon Wafers and Crystal Planes



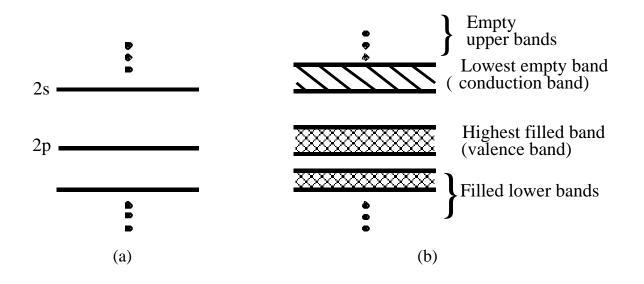
- The standard notation for crystal planes is based on the cubic unit cell.
- Silicon wafers are usually cut along the (100) plane with a flat or notch to help orient the wafer during IC fabrication.


| Si Si Si Si<br>Si Si Si<br>Si Si Si | ·· ··<br>Si Si Si | si Si Si | 1.2 | •••<br>•• | <i>Iodel of E</i> Si : Si : Si : Si : Si : Si : | • Silicon crystal in<br>a two-dimensional<br>representation. |
|-------------------------------------|-------------------|----------|-----|-----------|-------------------------------------------------|--------------------------------------------------------------|
|                                     |                   |          |     | • •       | • •                                             |                                                              |
|                                     |                   |          |     |           |                                                 |                                                              |

#### **Dopants in Silicon**

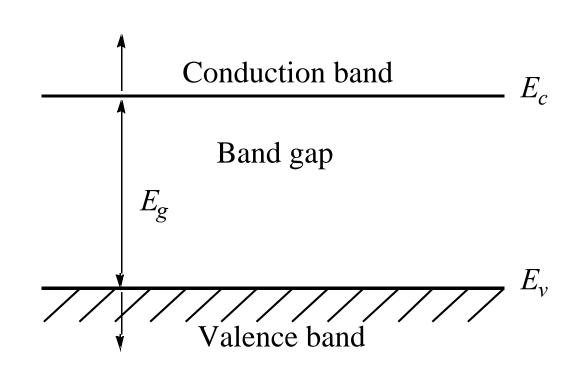


- As, a Group V element, introduces conduction electrons and creates *N-type silicon*, and is called a *donor*.
- B, a Group III element, introduces holes and creates *P-type silicon*, and is called an *acceptor*.
- Donors and acceptors are known as dopants. Dopant ionization energy ~50meV (very low). Hydrogen:  $E_{ion} = \frac{m_0 q^4}{8\varepsilon_0^2 h^2} = 13.6 \text{ eV}$


GaAs, III-V Compound Semiconductors, and Their Dopants



Ga: As : Ga: As: Ga: As: Ga: As : Ga:


- GaAs has the same crystal structure as Si.
- GaAs, GaP, GaN are III-V compound semiconductors, important for optoelectronics.
- Which group of elements are candidates for donors? acceptors?

## 1.3 Energy Band Model



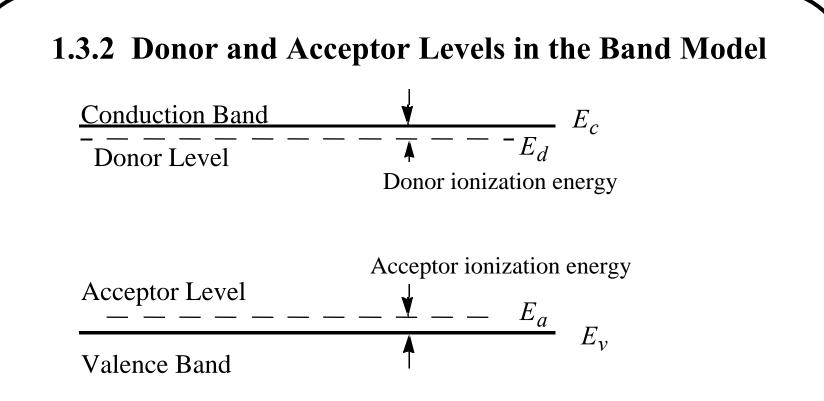
- Energy states of Si atom (a) expand into energy bands of Si crystal (b).
- The lower bands are filled and higher bands are empty in a semiconductor.
- The highest filled band is the *valence band*.
- The lowest empty band is the *conduction band*.

#### **1.3.1 Energy Band Diagram**



• *Energy band diagram* shows the bottom edge of conduction band,  $E_c$ , and top edge of valence band,  $E_v$ .

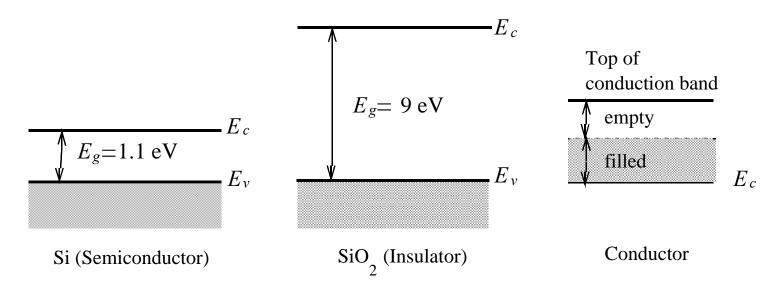
•  $E_c$  and  $E_v$  are separated by the **band gap energy**,  $E_g$ .


#### Measuring the Band Gap Energy by Light Absorption



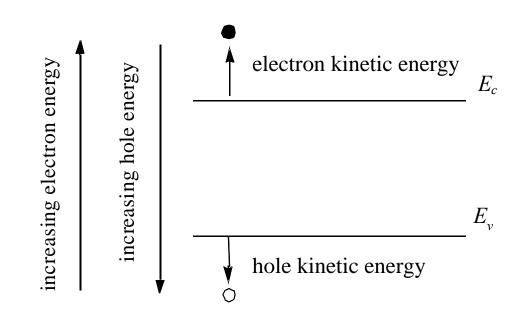
•  $E_g$  can be determined from the minimum energy (hv) of photons that are absorbed by the semiconductor.

#### Bandgap energies of selected semiconductors


| Semiconductor | PbTe | Ge   | Si   | GaAs | GaP  | Diamond |
|---------------|------|------|------|------|------|---------|
| $E_g$ (eV)    | 0.31 | 0.67 | 1.12 | 1.42 | 2.25 | 6.0     |



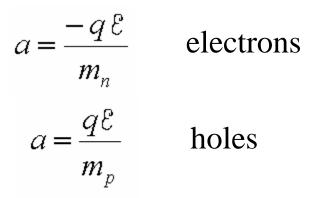
Ionization energy of selected donors and acceptors in silicon


|                                                     | Donors |    |    | Acceptors |    |     |
|-----------------------------------------------------|--------|----|----|-----------|----|-----|
| Dopant                                              | Sb     | Р  | As | В         | Al | In  |
| Ionization energy, $E_c - E_d$ or $E_a - E_v$ (meV) | 39     | 44 | 54 | 45        | 57 | 160 |

## 1.4 Semiconductors, Insulators, and Conductors



- Totally filled bands and totally empty bands do not allow current flow. (Just as there is no motion of liquid in a totally filled or totally empty bottle.)
- Metal conduction band is half-filled.
- Semiconductors have lower  $E_g$ 's than insulators and can be doped.


## **1.5 Electrons and Holes**

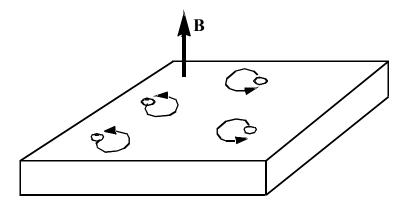


- Both electrons and holes tend to seek their lowest energy positions.
- Electrons tend to fall in the energy band diagram.
- Holes float up like bubbles in water.

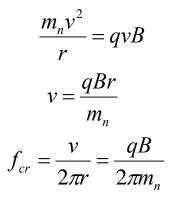
#### **1.5.1 Effective Mass**

In an electric field,  $\mathcal{E}$ , an electron or a hole accelerates.



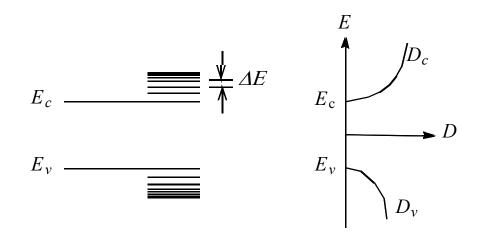

#### **Electron and hole effective masses**

|           | Si   | Ge   | GaAs  | GaP  |
|-----------|------|------|-------|------|
| $m_n/m_0$ | 0.26 | 0.12 | 0.068 | 0.82 |
| $m_p/m_0$ | 0.39 | 0.30 | 0.50  | 0.60 |


#### **1.5.2** How to Measure the Effective Mass

Cyclotron Resonance Technique

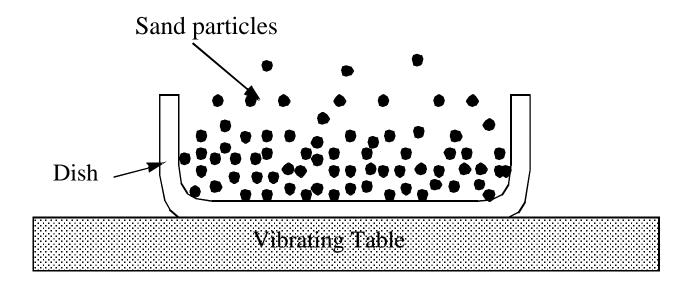
Centripetal force = Lorentzian force








 $f_{cr}$  is the Cyclotron resonance frequency. It is independent of v and r. Electrons strongly absorb microwaves of that frequency. By measuring  $f_{cr}$ ,  $m_n$  can be found.


#### **1.6** Density of States



$$D_{c}(E) = \frac{\text{number of states in } \Delta E}{\Delta E \cdot \text{volume}} \left(\frac{1}{\text{eV} \cdot \text{cm}^{3}}\right)$$
$$D_{c}(E) = \frac{8\pi m_{n}\sqrt{2m_{n}(E - E_{c})}}{h^{3}}$$
$$D_{v}(E) = \frac{8\pi m_{p}\sqrt{2m_{p}(E_{v} - E)}}{h^{3}}$$

Semiconductor Devices for Integrated Circuits (C. Hu)

## **1.7 Thermal Equilibrium 1.7.1 An Analogy for Thermal Equilibrium**



• There is a certain probability for the electrons in the conduction band to occupy high-energy states under the agitation of thermal energy (vibrating atoms, etc.)

#### **1.7.2 Fermi Function–The Probability of an Energy State Being Occupied by an Electron**

$$f(E) = \frac{1}{1 + e^{(E - E_f)/kT}}$$

 $f(E) \approx e^{-(E-E_f)/kT}$ 

0.5

f(E)

E

 $E_f + 3kT$  $E_{f_{i}} + 2kT$ 

 $\begin{array}{c} E_f + kT \\ E_f \end{array}$ 

 $E_{f} - kT$ 

 $E_f - 2kT$ 

 $E_f - 3kT$ 

 $E_f$  is called the *Fermi energy* or the *Fermi level*.

Boltzmann approximation:

$$f(E) \approx e^{-(E-E_f)/kT}$$
 E

$$E - E_f >> kT$$

$$f(E) \approx 1 - e^{-(E_f - E)/kT} \quad E - E_f << -kT$$

*Remember: there is only*  $\int f(E) \approx 1 - e^{-(E_f - E)/kT}$  one Fermi-level in a system at equilibrium.

# 1.8 Electron and Hole Concentrations1.8.1 Derivation of *n* and *p* from *D*(*E*) and *f*(*E*)

$$n = \int_{E_c}^{\text{top of conduction band}} f(E) D_c(E) dE$$

$$n = \frac{8\pi m_n \sqrt{2m_n}}{h^3} \int_{E_c}^{\infty} \sqrt{E - E_c} e^{-(E - E_f)/kT} dE$$

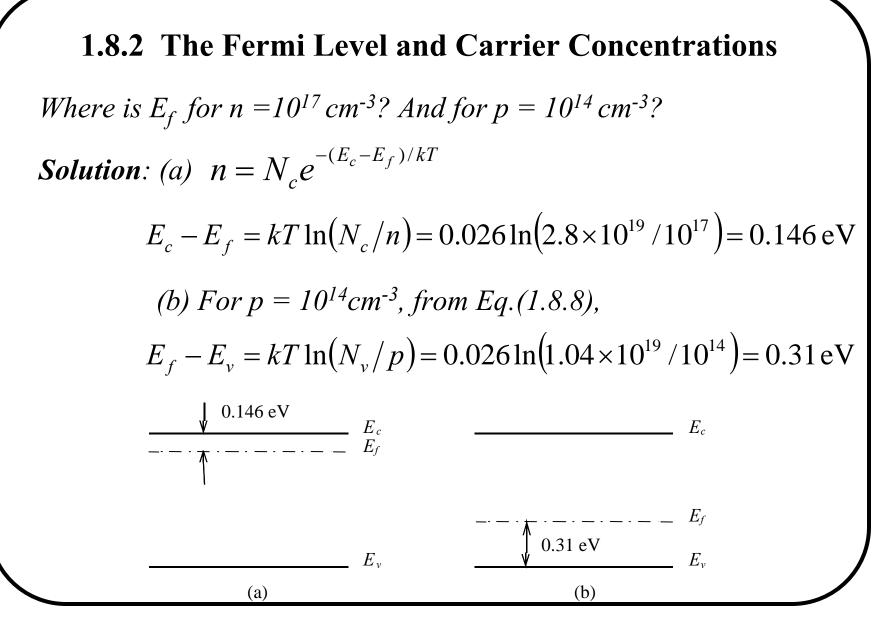
$$=\frac{8\pi m_n \sqrt{2m_n}}{h^3} e^{-(E_c - E_f)/kT} \int_0^\infty \sqrt{E - E_c} e^{-(E - E_c)/kT} dE$$

Semiconductor Devices for Integrated Circuits (C. Hu)

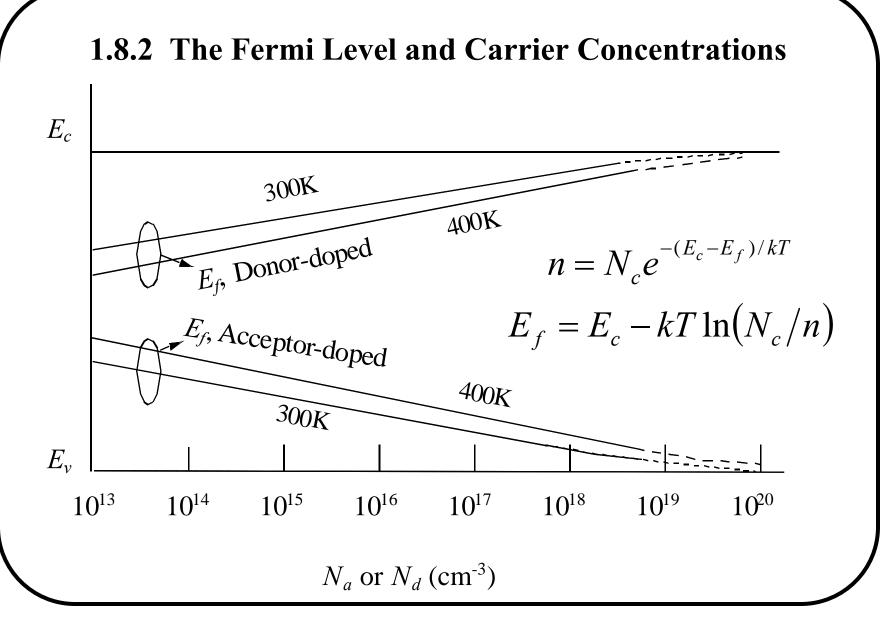
## **Electron and Hole Concentrations**

$$n = N_c e^{-(E_c - E_f)/kT}$$

$$N_c \equiv 2 \left[ \frac{2\pi m_n kT}{h^2} \right]^{3/2}$$


$$p = N_{v}e^{-(E_{f}-E_{v})/kT}$$

$$N_{v} \equiv 2 \left[ \frac{2\pi m_{p} kT}{h^{2}} \right]^{3/2}$$


 $N_c$  is called the *effective* density of states (of the conduction band).

 $N_v$  is called the *effective* density of states of the valence band.

Remember: the closer  $E_f$  moves up to  $N_c$ , the larger *n* is; the closer  $E_f$  moves down to  $N_v$ , the larger *p* is. For Si,  $N_c = 2.8 \times 10^{19}$  cm<sup>-3</sup> and  $N_v = 1.04 \times 10^{19}$  cm<sup>-3</sup>.



Slide 1-19



1.8.3 The np Product and the Intrinsic Carrier Concentration

Multiply 
$$n = N_c e^{-(E_c - E_f)/kT}$$
 and  $p = N_v e^{-(E_f - E_v)/kT}$ 

$$np = N_c N_v e^{-(E_c - E_v)/kT} = N_c N_v e^{-E_g/kT}$$

$$np = n_i^2$$

$$n_i = \sqrt{N_c N_v} e^{-E_g/2kT}$$

- In an intrinsic (undoped) semiconductor,  $n = p = n_i$ .
- $n_i$  is the *intrinsic carrier concentration*, ~10<sup>10</sup> cm<sup>-3</sup> for Si.

#### **EXAMPLE:** Carrier Concentrations

**Question:** What is the hole concentration in an N-type semiconductor with  $10^{15}$  cm<sup>-3</sup> of donors?

**Solution:**  $n = 10^{15} \text{ cm}^{-3}$ .

$$p = \frac{n_i^2}{n} \approx \frac{10^{20} \text{ cm}^{-3}}{10^{15} \text{ cm}^{-3}} = 10^5 \text{ cm}^{-3}$$

After increasing T by 60 °C, n remains the same at  $10^{15}$  cm<sup>-3</sup> while p increases by about a factor of 2300 because  $n_i^2 \propto e^{-E_g/kT}$ .

**Question:** What is n if  $p = 10^{17}$  cm<sup>-3</sup> in a P-type silicon wafer?

Solution:  

$$n = \frac{n_i^2}{p} \approx \frac{10^{20} \text{ cm}^{-3}}{10^{17} \text{ cm}^{-3}} = 10^3 \text{ cm}^{-3}$$

Semiconductor Devices for Integrated Circuits (C. Hu)

#### **EXAMPLE:** Complete ionization of the dopant atoms

 $N_d = 10^{17}$  cm<sup>-3</sup>. What fraction of the donors are not ionized?

Solution: First assume that all the donors are ionized.

$$n = N_d = 10^{17} \text{ cm}^{-3} \Rightarrow E_f = E_c - 146 \text{meV}$$

$$\xrightarrow{45 \text{meV}}_{146 \text{meV}}_{146 \text{meV}}_{166 \text{meV}$$

*Therefore, it is reasonable to assume complete ionization, i.e.,*  $n = N_d$ .

## **1.9 General Effects of Doping on n and p**

Charge neutrality:  $n + N_a = p + N_d$ 

$$np = n_i^2$$

$$p = \frac{N_a - N_d}{2} + \left[ \left( \frac{N_a - N_d}{2} \right)^2 + n_i^2 \right]^{1/2}$$
$$n = \frac{N_d - N_a}{2} + \left[ \left( \frac{N_d - N_a}{2} \right)^2 + n_i^2 \right]^{1/2}$$

Semiconductor Devices for Integrated Circuits (C. Hu)

## 1.9 General Effects of Doping on n and p

I. 
$$N_d - N_a >> n_i$$
 (i.e., N-type)  
 $n = N_d - N_a$   
 $p = n_i^2/n$ 

If  $N_d \gg N_a$ ,  $n = N_d$  and  $p = n_i^2 / N_d$ 

**II.** 
$$N_a - N_d >> n_i$$
 (i.e., P-type)  $p = N_a - N_d$   
 $n = n_i^2 / p$ 

If 
$$N_a >> N_d$$
,  $p = N_a$  and  $n = n_i^2 / N_a$ 

Semiconductor Devices for Integrated Circuits (C. Hu)

#### **EXAMPLE:** Dopant Compensation

What are n and p in Si with (a)  $N_d = 6 \times 10^{16} \text{ cm}^{-3}$  and  $N_a = 2 \times 10^{16} \text{ cm}^{-3}$ and (b) additional  $6 \times 10^{16} \text{ cm}^{-3}$  of  $N_a$ ?

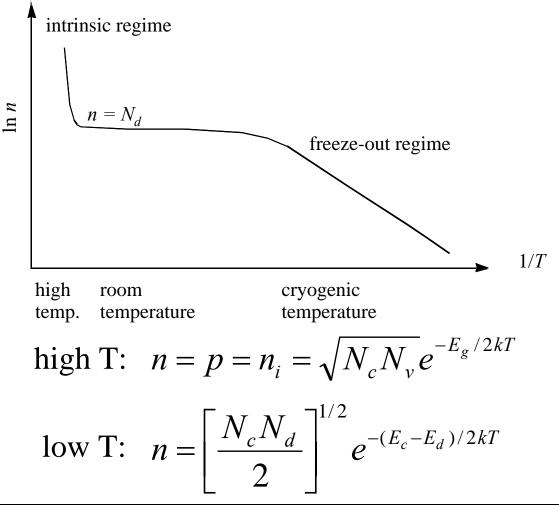
(a) 
$$n = N_d - N_a = 4 \times 10^{16} \text{ cm}^{-3}$$
  
 $p = n_i^2 / n = 10^{20} / 4 \times 10^{16} = 2.5 \times 10^3 \text{ cm}^{-3}$   
(b)  $N_a = 2 \times 10^{16} + 6 \times 10^{16} = 8 \times 10^{16} \text{ cm}^{-3} > N_d!$   
 $p = N_a - N_d = 8 \times 10^{16} - 6 \times 10^{16} = 2 \times 10^{16} \text{ cm}^{-3}$   
 $n = n_i^2 / p = 10^{20} / 2 \times 10^{16} = 5 \times 10^3 \text{ cm}^{-3}$   
 $\stackrel{\bullet \bullet \bullet}{=} \frac{n = 4 \times 10^{16} \text{ cm}^{-3}}{n = 6 \times 10^{16} \text{ cm}^{-3}}$ 

 $N_a = 2 \times 10^{16} \text{ cm}^{-3}$ 

Semiconductor Devices for Integrated Circuits (C. Hu)


00

 $N_a = 8 \times 10^{16} \text{ cm}^{-3}$ 


 $p = 2 \times 10^{16} \text{ cm}^{-3}$ 

#### Infrared Detector Based on Freeze-out

To image the black-body radiation emitted by tumors requires a photodetector that responds to hv's around 0.1 eV. In doped Si operating in the freeze-out mode, conduction electrons are created when the infrared photons provide the energy to ionized the donor atoms.



## 1.10 Carrier Concentrations at Extremely High and Low Temperatures



Semiconductor Devices for Integrated Circuits (C. Hu)

## 1.11 Chapter Summary

Energy band diagram. Acceptor. Donor.  $m_n, m_p$ . Fermi function.  $E_{f}$ .

$$n = N_c e^{-(E_c - E_f)/kT}$$
$$p = N_v e^{-(E_f - E_v)/kT}$$

$$n = N_d - N_a$$
$$p = N_a - N_d$$

$$np = n_i^2$$

Semiconductor Devices for Integrated Circuits (C. Hu)