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Chapter 6  MOSFET in the On-state

The MOSFET (MOS Field-Effect Transistor) is the 
building block of Gb memory chips, GHz 
microprocessors, analog, and RF circuits.

Match the following MOSFET characteristics with their 
applications:

• small size
• high speed
• low power
• high gain
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6.1  Introduction to the MOSFET

Basic MOSFET structure and IV characteristics
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6.1  Introduction to the MOSFET

Two ways of representing a MOSFET:
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Invention of the Field-Effect Transistor
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Invention of the Field-Effect Transistor

In 1935, a British patent was issued to Oskar Heil.  
A working MOSFET was not demonstrated until 1955.
Using today’s terminology, what are 1, 2, and 6?
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Today’s MOSFET Technology

Gate oxides as thin as 1.2 nm can be manufactured reproducibly.
Large tunneling current through the oxide limits oxide-thickness
reduction.
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6.2  Complementary MOSFETs

When Vg = Vdd , the NFET is on and the PFET is off. 
When Vg = 0, the PFET is on and the NFET is off.

NFET PFET
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CMOS (Complementary MOS) Inverter

A CMOS inverter is made of a PFET pull-up device and a 
NFET pull-down device. Vout = ? if Vin = 0 V.

C: 
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CMOS (Complementary MOS) Inverter

• NFET and PFET can be fabricated 
on the same chip.
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• basic layout of a 
CMOS inverter
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6.3  Surface Mobilities of Electrons and Holes
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How to measure the surface mobility:

Vg = Vdd , Vgs = Vdd

Ids

Vds > 0
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Surface mobility is a function of the average of the fields at the 
bottom and the top of the inversion charge layer, b and t .

From Gauss’s Law,
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Mobility is a function of Vgs , 
Vt , and Toxe .

What suppresses the surface 
mobility:
• phonon scattering
• coulombic scattering
• surface roughness 

scattering

      (Vgs  + Vt + 0.2)/6Toxe (MV/cm)

–(Vgs  + 1.5Vt – 0.25)/6Toxe (MV/cm)

 
 (NFET)

 (PFET)

Universal Surface Mobilities
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EXAMPLE:  What is the surface mobility at Vgs=1 V 
in an N-channel MOSFET with Vt=0.3 V and Toxe=2
nm?

Solution:  

1 MV is a megavolt (106 V). From the mobility figure, 
µns=190 cm2/Vs, which is several times smaller than 
the bulk mobility.

MV/cm 25.1
cm1012/V 5.1

6/)2.0(
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=
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How to Measure the Vt of a MOSFET
6.4   MOSFET Vt and the Body Effect

Vds = 50mV

 Ids

Vgs

Vt
Vt is measured by extrapolating the Ids versus Vgs
curve to Ids = 0.

tgsdsnstgsoxedsat VVVVVC
L

WI −∝−= µ)(
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6.4   MOSFET Vt and the Body Effect
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• body effect:
Vt is a function of Vsb

• body effect coefficient:
α  = Cdep/Coxe

= 3Toxe / Wdmax

Is the body effect a good thing?  How can it be reduced?

6.4   MOSFET Vt and the Body Effect
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When the source-body junction
is reverse-biased, the NFET Vt
increases and the PFET Vt
becomes more negative.
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Retrograde Body Doping Profiles

• Wdep does not vary with Vsb .
• Retrograde doping is popular because it reduces off-state

leakage.
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Uniform Body Doping

When the source/body junction is reverse-biased, there are 
two quasi-Fermi levels (Efn and Efp) which are separated by 
qVsb. An NMOSFET reaches threshold of inversion when Ec
is close to Efn , not Efp . This requires the band-bending to be 
2φB + Vsb , not 2φB.
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γ is the body-effect parameter.
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6.5  Qinv in MOSFET

• Channel voltage
Vc=Vs at x = 0 and
Vc=Vd at x = L. 

• Qinv = – Coxe(Vgs – Vcs – Vt0 – α (Vsb+Vcs)
= – Coxe(Vgs – Vcs – (Vt0 +α Vsb) – α Vcs)
= – Coxe(Vgs – mVcs – Vt)

• m ≡ 1 +α  = 1 + 3Toxe/Wdmax 
m is called the body-effect factor or bulk-charge factor
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6.6  Basic MOSFET IV Model

Ids= WQinvv= WQinvµns
= WCoxe(Vgs– mVcs – Vt)µnsdVcs/dx

cs

L V
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Vdsat :  Drain Saturation Voltage
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I = µ nQin vdVcs/dx

Id sat

0  L  x

I = µ nQin vdVcs/dx

Id sat

0  L  x

 0  L  0  L x  x
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(b) (f)
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Saturation Current and Transconductance

• transconductance: gm= dIds/dVgs

2)(
2 tgsnsoxedsat VVC

mL
WI −= µ

• linear region, saturation region

)( tgsnsoxemsat VVC
mL
Wg −= µ
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6.7.1  CMOS Inverter Voltage Transfer Curve      
– Regeneration of Digital Signal
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6.7.2   CMOS Inverter Delay
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6.7.2   CMOS Inverter Delay

How can the speed of an inverter circuit be improved?



Semiconductor Devices for Integrated Circuits (C. Hu) Slide 6-27
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6.7.3   CMOS Power Consumption
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Logic Gates

V dd

AB

A

B

This two-input NAND
gate and many other 
logic gates are 
extensions of the 
inverter.
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6.8   Velocity Saturation
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+

=
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• velocity saturation has
large and deleterious 
effect on the Ion of 
MOSFETS
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>> sat : v = µs sat
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6.9   MOSFET IV Model with Velocity Saturation
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6.9   MOSFET IV Model with Velocity Saturation
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A simpler and more accurate Vdsat is:

6.9   MOSFET IV Model with Velocity Saturation
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EXAMPLE:  Drain Saturation Voltage

Question:  At Vgs = 1.8 V, what is the Vdsat of an NFET with 
Toxe = 3 nm,  Vt = 0.25 V, and Wdmax = 45 nm for (a) L =10 
µm, (b) L = 1 um, (c) L = 0.1 µm, and (d) L = 0.05 µm?

Solution: From Vgs , Vt , and Toxe , µns is 200 cm2V-1s-1. 

sat= 2vsat/µ es = 8 ×104 V/cm
m = 1 + 3Toxe/Wdmax = 1.2

1
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(a) L = 10 µm, Vdsat= (1/1.3V + 1/80V)-1 = 1.3 V

(b) L = 1 µm, Vdsat= (1/1.3V + 1/8V)-1 = 1.1 V

(c) L = 0.1 µm, Vdsat= (1/1.3V + 1/.8V)-1 =  0.5 V

(d) L = 0.05 µm, Vdsat= (1/1.3V + 1/.4V)-1 =  0.3 V

EXAMPLE:  Drain Saturation Voltage
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Idsat with Velocity Saturation

Substituting Vdsat for Vds in Ids equation gives:
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• Idsat is proportional to Vgs–Vt rather than (Vgs – Vt)2 , not
as sensitive to L as 1/L.
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Measured MOSFET IV

What is the main difference between the Vg dependences
of the long- and short-channel length IV curves?
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PMOS and NMOS IV Characteristics

The PMOS IV is qualitatively similar to the NMOS IV, 
but the current is about half as large. How can we 
design a CMOS inverter so that its voltage transfer 
curve is symmetric?
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6.10   Parasitic Source-Drain Resistance
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• Idsat is reduced by about 15% in a 0.1µm MOSFET.
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Definitions of Channel Length

LLL drawn ∆−≡

L, Leff ,
or Le
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N N

Ldraw n
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6.11  Extraction of the Series Resistance and the 
Effective Channel Length
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Include series resistance, 
Rds ≡ Rd + Rs ,
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6.12  Source Injection Velocity Limit

• Carrier velocity is limited
by the thermal velocity
when they first enter the
channel from the source.

• Idsat = WBvthxQinv 
= WBvthxCoxe(Vgs – Vt)

   N+

 gate

 N+

S      D
Vds

Ec

Ev

-

 Vgs
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6.13  Chapter Summary

sbtsbt VVVV α+= 0)( for steep retrograde body doping

• body effect

dmaxoxe WT /3=α

• basic Ids model

dsdstgssoxeds VVmVVC
L

WI )
2

( −−= µ

2.1/31 ≈+= dmaxoxe WTm

• Small α and m are desirable. Therefore, small Toxe is good.
Ch.7 shows that large Wdmax is not acceptable.
• CMOS circuit speed is determined by CVdd/Idsat , and its 
power by CVdd

2f + VddIoff .
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6.13  Chapter Summary

IV characteristics can be divided into a linear region 
and a saturation region. 
Ids saturates at:
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transconductance:


