Chapter 6 MOSFET in the On-state

The MOSFET (MOS Field-Effect Transistor) is the building block of Gb memory chips, GHz microprocessors, analog, and RF circuits.

Match the following MOSFET characteristics with their applications:

- small size
- high speed
- low power
- high gain

6.1 Introduction to the MOSFET

Basic MOSFET structure and IV characteristics

6.1 Introduction to the MOSFET

Two ways of representing a MOSFET:

Circuit Symbol

Simple Switch

Invention of the Field-Effect Transistor

Jan. 23, 1930.

1. E LILIENFELD

1,745,175

Filed Det - Br 19es

Semiconductor Devices for Integrated Circuits (C. Hu)

Invention of the Field-Effect Transistor

In 1935, a British patent was issued to Oskar Heil. A working MOSFET was not demonstrated until 1955. Using today's terminology, what are 1,2 , and 6 ?

Today's MOSFET Technology

Gate oxides as thin as 1.2 nm can be manufactured reproducibly. Large tunneling current through the oxide limits oxide-thickness reduction.

6.2 Complementary MOSFETs

NFET
$\mathrm{V}_{\mathrm{g}}=\mathrm{V}_{\mathrm{dd}}$

PFET
$V_{g}=0$

When $V_{g}=V_{d d}$, the NFET is on and the PFET is off.
When $V_{g}=0$, the PFET is on and the NFET is off.

CMOS (Complementary MOS) Inverter

A CMOS inverter is made of a PFET pull-up device and a NFET pull-down device. $V_{\text {out }}=$? if $V_{\text {in }}=0 \mathrm{~V}$.

CMOS (Complementary MOS) Inverter

- NFET and PFET can be fabricated on the same chip.

- basic layout of a CMOS inverter

6.3 Surface Mobilities of Electrons and Holes

How to measure the surface mobility:

$$
\begin{aligned}
I_{d s} & =W \cdot Q_{i n v} \cdot v=W Q_{i n v} \mu_{n s}=W Q_{i n v} \mu_{n s} V_{d s} / L \\
& =W C_{o x e}\left(V_{g}-V_{t}\right) \mu_{n s} V_{d s} / L
\end{aligned}
$$

Surface mobility is a function of the average of the fields at the bottom and the top of the inversion charge layer, ε_{b} and ε_{t}.

From Gauss's Law,

$$
\begin{gathered}
\varepsilon_{b}=-Q_{d e p} / \varepsilon_{s} \\
V_{t}=V_{f b}+\phi_{s t}-Q_{d e p} / C_{o x e}
\end{gathered}
$$

Therefore,

$$
\begin{aligned}
\varepsilon_{b} & =\frac{C_{o x e}}{\varepsilon_{s}}\left(V_{t}-V_{f b}+\phi_{s t}\right) & \therefore \frac{1}{2}\left(\varepsilon_{b}+\varepsilon_{t}\right) & =\frac{C_{o x e}}{2 \varepsilon_{s}}\left(V_{g s}+V_{t}-2 V_{f b}-2 \phi_{s t}\right) \\
& =\varepsilon_{b}-Q_{i n v} / \varepsilon_{s}=\varepsilon_{b}+\frac{C_{o x e}}{\varepsilon_{s}}\left(V_{g s}-V_{t}\right) & & \approx \frac{C_{o x e}}{2 \varepsilon_{s}}\left(V_{g s}+V_{t}+0.2 \mathrm{~V}\right) \\
& =\frac{C_{o x e}}{\varepsilon_{s}}\left(V_{g s}-V_{f b}+\phi_{s t}\right) & & =\frac{V_{g s}+V_{t}+0.2 \mathrm{~V}}{6 T_{o x e}}
\end{aligned}
$$

Universal Surface Mobilities

Mobility is a function of $V_{g s}$, V_{t}, and $T_{\text {oxe }}$.

What suppresses the surface mobility:

- phonon scattering
- coulombic scattering
- surface roughness scattering

EXAMPLE: What is the surface mobility at $V_{g s}=1 \mathrm{~V}$ in an N-channel MOSFET with $V_{t}=0.3 V$ and $T_{o x e}=2$ $n m$?

Solution: $\left(V_{g s}+V_{t}+0.2\right) / 6 T_{\text {oxe }}$

$$
\begin{aligned}
& =1.5 \mathrm{~V} / 12 \times 10^{-7} \mathrm{~cm} \\
& =1.25 \mathrm{MV} / \mathrm{cm}
\end{aligned}
$$

1 MV is a megavolt ($10^{6} \mathrm{~V}$). From the mobility figure, $\mu_{n s}=190 \mathrm{~cm} 2 / V s$, which is several times smaller than the bulk mobility.

6.4 MOSFET V ${ }_{t}$ and the Body Effect

How to Measure the V_{t} of a MOSFET

V_{t} is measured by extrapolating the $I_{d s}$ versus $V_{g s}$ curve to $I_{d s}=0$.

$$
I_{d s a t}=\frac{W}{L} C_{\text {oxe }}\left(V_{g s}-V_{t}\right) \mu_{n s} V_{d s} \propto V_{g s}-V_{t}
$$

6.4 MOSFET V ${ }_{t}$ and the Body Effect

$C_{d e p}=\frac{\varepsilon_{s}}{W_{d \text { max }}}$

- Two capacitors => two charge components

$$
\begin{aligned}
Q_{i n v} & =-C_{\text {oxe }}\left(V_{g s}-V_{t}\right)+C_{\text {dep }} V_{s b} \\
& =-C_{\text {oxe }}\left(V_{g s}-\left(V_{t}+\frac{C_{\text {dep }}}{C_{\text {oxe }}} V_{s b}\right)\right)
\end{aligned}
$$

- Redefine V_{t} as

$$
V_{t}\left(V_{s b}\right)=V_{t 0}+\frac{C_{\text {dep }}}{C_{\text {oxe }}} V_{s b}=V_{t 0}+\alpha V_{s b}
$$

6.4 MOSFET V ${ }_{t}$ and the Body Effect

- body effect:
V_{t} is a function of $V_{s b}$
- body effect coefficient:

$$
\begin{aligned}
\alpha & =C_{\text {dep }} / C_{\text {oxe }} \\
& =3 T_{\text {oxe }} / W_{\text {dmax }}
\end{aligned}
$$

When the source-body junction is reverse-biased, the NFET V_{t} increases and the PFET V_{t} becomes more negative.

Is the body effect a good thing? How can it be reduced?

Retrograde Body Doping Profiles

- $W_{d e p}$ does not vary with $V_{s b}$.
- Retrograde doping is popular because it reduces off-state leakage.

Uniform Body Doping

When the source/body junction is reverse-biased, there are two quasi-Fermi levels ($E_{f n}$ and $E_{f p}$) which are separated by $q V_{s b}$. An NMOSFET reaches threshold of inversion when E_{c} is close to $E_{f n}$, not $E_{f p}$. This requires the band-bending to be $2 \phi_{B}+V_{s b}, \operatorname{not} 2 \phi_{B}$.

$$
\begin{aligned}
V_{t} & =V_{t 0}+\frac{\sqrt{q N_{a} 2 \varepsilon_{s}}}{C_{\text {oxe }}}\left(\sqrt{2 \phi_{B}+V_{s b}}-\sqrt{2 \phi_{B}}\right) \\
& \equiv V_{t 0}+\gamma\left(\sqrt{2 \phi_{B}+V_{s b}}-\sqrt{2 \phi_{B}}\right)
\end{aligned}
$$

γ is the body-effect parameter.

6.5 $Q_{i n v}$ in MOSFET

- Channel voltage $V_{c}=V_{s}$ at $x=0$ and $V_{c}=V_{d}$ at $x=L$.
- $Q_{i n v}=-C_{o x e}\left(V_{g s}-V_{c s}-V_{t 0}-\alpha\left(V_{s b}+V_{c s}\right)\right.$

$$
=-C_{o x e}\left(V_{g s}-V_{c s}-\left(V_{t 0}+\alpha V_{s b}\right)-\alpha V_{c s}\right)
$$

$$
=-C_{o x e}\left(V_{g s}-m V_{c s}-V_{t}\right)
$$

- $m \equiv 1+\alpha=1+3 T_{\text {oxe }} / W_{\text {dmax }}$ m is called the body-effect factor or bulk-charge factor

6.6 Basic MOSFET IV Model

$$
\begin{aligned}
I_{d s} & =W Q_{i n v} v=W Q_{i n v} \mu_{n s} \\
& =W C_{o x e}\left(V_{g s}-m V_{c s}-V_{t}\right) \mu_{n s} d V_{c s} / d x \\
\int_{0}^{L} I_{d s} d x & =W C_{o x e} \mu_{n s} \int_{0}^{L_{d s}}\left(V_{g s}-m V_{c s}-V_{t}\right) d V_{c s} \\
I_{d s} L & =W C_{o x e} \mu_{n s}\left(V_{g s}-V_{t}-m V_{d s} / 2\right) V_{d s}
\end{aligned}
$$

$$
I_{d s}=\frac{W}{L} C_{o x e} \mu_{s}\left(V_{g s}-V_{t}-\frac{m}{2} V_{d s}\right) V_{d s}
$$

$V_{\text {dsat }}$: Drain Saturation Voltage

$$
\frac{d I_{d s}}{d V_{d s}}=0=\frac{W}{L} C_{o x e} \mu_{n s}\left(V_{g s}-V_{t}-m V_{d s}\right) \Longrightarrow V_{d s a t}=\frac{V_{g s}-V_{t}}{m}
$$

Semiconductor Devices for Integrated Circuits (C. Hu)

Saturation Current and Transconductance

- linear region, saturation region

$$
I_{d s a t}=\frac{W}{2 m L} C_{o x e} \mu_{n s}\left(V_{g s}-V_{t}\right)^{2}
$$

- transconductance: $g_{m}=d I_{d s} / d V_{g s}$

$$
g_{m s a t}=\frac{W}{m L} C_{o x e} \mu_{n s}\left(V_{g s}-V_{t}\right)
$$

6.7.1 CMOS Inverter Voltage Transfer Curve - Regeneration of Digital Signal

6.7.2 CMOS Inverter Delay

6.7.2 CMOS Inverter Delay

$\tau_{d} \equiv \frac{1}{2}$ (pull-down delay + pull-up delay $)$
pull-up delay $\approx \frac{C V_{d d}}{2 I_{d s a t P}}$
pull - down delay $\approx \frac{C V_{d d}}{2 I_{d s a t N}}$
$\tau_{d}=\frac{C V_{d d}}{4}\left(\frac{1}{I_{\text {dsatN }}}+\frac{1}{I_{\text {dsatP }}}\right)$
R_{N} and $R_{P}=\frac{V_{d d}}{2 I_{o n}}=\frac{V_{d d}}{2 I_{d s a t}\left(\left|V_{g}\right|=V_{d d}\right)}$
How can the speed of an inverter circuit be improved?

6.7.3 CMOS Power Consumption

$$
\begin{aligned}
& P_{\text {dynamic }}=V_{d d} \times \text { average current }=C V_{d d}^{2} f \\
& \begin{aligned}
& P_{\text {static }}= V_{d d} I_{\text {off }} \\
& \begin{aligned}
P_{\text {direct-path }} & \approx V_{d d} \frac{I_{d s a t}}{5} \frac{t_{r}+t_{f}}{2} f=0.2 C V_{d d}^{2} f \\
& =0.2 P_{\text {dynamic }}
\end{aligned}
\end{aligned} .
\end{aligned}
$$

Total power consumption

$$
P=1.2 C V_{d d}^{2} f+V_{d d} I_{o f f}
$$

Logic Gates

This two-input NAND gate and many other logic gates are extensions of the inverter.

6.8 Velocity Saturation

$$
\begin{gathered}
v=\frac{\mu_{s}^{\ell}}{1+\frac{\varepsilon}{\varepsilon_{s a t}}} \\
\varepsilon \ll \varepsilon_{s a t}: v=\mu_{s} \\
\varepsilon \gg \varepsilon_{s a t}: v=\mu_{s} \varepsilon_{s a t}
\end{gathered}
$$

6.9 MOSFET IV Model with Velocity Saturation

$$
I_{d s}=W Q_{i n v} v
$$

$$
I_{d s}=W C_{o x e}\left(V_{g s}-m V_{c s}-V_{t}\right) \frac{\mu_{n s} d V_{c s} / d x}{1+\frac{d V_{c s}}{d x} / \varepsilon_{s a t}}
$$

$$
\int_{0}^{L} I_{d s} d x=\int_{0}^{V_{d s}}\left[W C_{o x e} \mu_{n s}\left(V_{g s}-m V_{c s}-V_{t}\right)-I_{d s} / \varepsilon_{s a t}\right] d V_{c s}
$$

$$
I_{d s} L=W C_{o x e} \mu_{n s}\left(V_{g s}-V_{t}-\frac{m}{2} V_{d s}\right) V_{d s}-I_{d s} V_{d s} / \varepsilon_{s a t}
$$

6.9 MOSFET IV Model with Velocity Saturation

$$
\begin{gathered}
I_{d s}=\frac{\frac{W}{L} C_{o x e} \mu_{n s}\left(V_{g s}-V_{t}-\frac{m}{2} V_{d s}\right) V_{d s}}{1+\frac{V_{d s}}{\ell_{s a t} L}} \\
I_{d s}=\frac{\text { long }- \text { channel } I_{d s}}{1+V_{d s} / \varepsilon_{s a t} L}
\end{gathered}
$$

6.9 MOSFET IV Model with Velocity Saturation

$$
\begin{aligned}
& \text { Solving } \frac{d I_{d s}}{d V_{d s}}=0, \\
& V_{d s a t}=\frac{2\left(V_{g s}-V_{t}\right) / m}{1+\sqrt{1+2\left(V_{g s}-V_{t}\right) / m \ell_{s a t} L}}
\end{aligned}
$$

A simpler and more accurate $V_{d s a t}$ is:

$$
\begin{array}{|l}
\frac{\frac{1}{V_{d s a t}}=\frac{m}{V_{g s}-V_{t}}+\frac{1}{\varepsilon_{s a t} L}}{} \\
\varepsilon_{s a t} \equiv \frac{2 v_{s a t}}{\mu_{s}}
\end{array}
$$

EXAMPLE: Drain Saturation Voltage

Question: At $V_{g s}=1.8 \mathrm{~V}$, what is the $V_{d s a t}$ of an NFET with $T_{\text {oxe }}=3 \mathrm{~nm}, V_{t}=0.25 \mathrm{~V}$, and $W_{\text {dmax }}=45 \mathrm{~nm}$ for (a) $L=10$ μm, (b) $L=1$ um, (c) $L=0.1 \mu m$, and (d) $L=0.05 \mu m$?

Solution: From $V_{g s}, V_{t}$, and $T_{\text {oxe }}, \mu_{n s}$ is $200 \mathrm{~cm}^{2} V^{-1} s^{-1}$.

$$
\begin{aligned}
& \varepsilon_{s a t}=2 v_{s a t} / \mu_{e s}=8 \times 10^{4} \mathrm{~V} / \mathrm{cm} \\
& m=1+3 T_{o x e} / W_{d \max }=1.2 \\
& V_{d s a t}=\left(\frac{m}{V_{g s}-V_{t}}+\frac{1}{\ell_{s a t} L}\right)^{-1}
\end{aligned}
$$

EXAMPLE: Drain Saturation Voltage

$$
V_{d s a t}=\left(\frac{m}{V_{g s}-V_{t}}+\frac{1}{\varepsilon_{s a t} L}\right)^{-1}
$$

(a) $L=10 \mu m, \quad V_{d s a t}=(1 / 1.3 \mathrm{~V}+1 / 80 \mathrm{~V})^{-1}=1.3 \mathrm{~V}$
(b) $L=1 \mu m, \quad V_{d s a t}=(1 / 1.3 \mathrm{~V}+1 / 8 \mathrm{~V})^{-1}=1.1 \mathrm{~V}$
(c) $L=0.1 \mu m, \quad V_{d s a t}=(1 / 1.3 \mathrm{~V}+1 / .8 \mathrm{~V})^{-1}=0.5 \mathrm{~V}$
(d) $L=0.05 \mu m, V_{d s a t}=(1 / 1.3 \mathrm{~V}+1 / .4 \mathrm{~V})^{-1}=0.3 \mathrm{~V}$

$I_{\text {dsat }}$ with Velocity Saturation

Substituting $V_{d s a t}$ for $V_{d s}$ in $I_{d s}$ equation gives:

$$
I_{\text {dsat }}=\frac{W}{2 m L} C_{\text {oxe }} \mu_{s} \frac{\left(V_{g s}-V_{t}\right)^{2}}{1+\frac{V_{g s}-V_{t}}{m \sum_{\text {sat }} L}}=\frac{\text { long }- \text { channel } I_{\text {dsat }}}{1+\frac{V_{g s}-V_{t}}{m \ell_{\text {sat }} L}}
$$

Very short channel case:

$$
\ell_{s a t} L \ll V_{g s}-V_{t}
$$

$$
\begin{aligned}
I_{d s a t} & =\frac{W}{2} C_{o x e} \mu_{s} \varepsilon_{s a t}\left(V_{g s}-V_{t}\right) \\
& =W v_{\text {sat }} C_{\text {oxe }}\left(V_{g s}-V_{t}-\varepsilon_{s a t} L\right)
\end{aligned}
$$

- $I_{d s a t}$ is proportional to $V_{g s}-V_{t}$ rather than $\left(V_{g s}-V_{t}\right)^{2}$, not as sensitive to L as $1 / L$.

Measured MOSFET IV

What is the main difference between the V_{g} dependences of the long- and short-channel length IV curves?

PMOS and NMOS IV Characteristics

The PMOS IV is qualitatively similar to the NMOS IV, but the current is about half as large. How can we design a CMOS inverter so that its voltage transfer curve is symmetric?

6.10 Parasitic Source-Drain Resistance

- If $I_{d s a t 0} \propto V_{g}-V_{t}, I_{d s a t}=\frac{I_{d s a t 0}}{1+\frac{I_{d s a t 0} R_{s}}{\left(V_{g s}-V_{t}\right)}}$
- $I_{d s a t}$ is reduced by about 15% in a $0.1 \mu \mathrm{~m}$ MOSFET.
- $V_{d s a t}=V_{d s a t 0}+I_{d s a t}\left(R_{s}+R_{d}\right)$

Definitions of Channel Length

$$
L \equiv L_{\text {drawn }}-\Delta L
$$

6.11 Extraction of the Series Resistance and the Effective Channel Length

$$
\begin{gathered}
I_{d s}=\frac{W C_{o x e} \mu_{s} V_{d s}}{L_{d r a w n}-\Delta L}\left(V_{g s}-V_{t}\right) \\
V_{d s}=\frac{I_{d s}\left(L_{d r a v n}-\Delta L\right)}{W C_{o x e}\left(V_{g s}-V_{t}\right) \mu_{s}}
\end{gathered}
$$

Include series resistance,

$$
R_{d s} \equiv R_{d}+R_{s}
$$

$$
\frac{V_{d s}}{I_{d s}}=R_{d s}+\frac{L_{\text {drawn }}-\Delta L}{W C_{\text {oxe }}\left(V_{g s}-V_{t}\right) \mu_{s}}
$$

6.13 Chapter Summary

- body effect
$V_{t}\left(V_{s b}\right)=V_{t 0}+\alpha V_{s b} \quad$ for steep retrograde body doping

$$
\alpha=3 T_{\text {oxe }} / W_{d \max }
$$

- basic $\boldsymbol{I}_{d s}$ model

$$
I_{d s}=\frac{W}{L} C_{o x e} \mu_{s}\left(V_{g s}-V_{t}-\frac{m}{2} V_{d s}\right) V_{d s}
$$

$$
m=1+3 T_{\text {oxe }} / W_{d \text { max }} \approx 1.2
$$

- Small α and m are desirable. Therefore, small $T_{\text {oxe }}$ is good. Ch. 7 shows that large $W_{d \max }$ is not acceptable.
- CMOS circuit speed is determined by $C V_{d d} / I_{d s a t}$, and its power by $C V_{d d}{ }^{2} f+V_{d d} I_{\text {off }}$.

6.13 Chapter Summary

IV characteristics can be divided into a linear region and a saturation region. $I_{d s}$ saturates at:

$$
\begin{aligned}
& V_{\text {dsat }}=\frac{V_{g s}-V_{t}}{m} \\
& I_{\text {dsat }}=\frac{W}{2 m L} C_{\text {oxe }} \mu_{s}\left(V_{g s}-V_{t}\right)^{2}
\end{aligned}
$$

transconductance:

$$
g_{m s a t}=\frac{W}{m L} C_{o x e} \mu_{s}\left(V_{g s}-V_{t}\right)
$$

Considering velocity saturation,

$$
V_{\text {dsat }}=\left(\frac{m}{V_{g s}-V_{t}}+\frac{1}{\ell_{s a t} L}\right)^{-1}
$$

$$
I_{d s a t}=\frac{\text { long }- \text { channel } I_{d s a t}}{1+\frac{V_{g s}-V_{t}}{m \varepsilon_{s a t} L}}
$$

