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Chapter 8   Bipolar Junction Transistors

• Since 1970, the high density and low-power advantage of 
the MOS technology steadily eroded the BJT’s early dominance.

• BJTs are still preferred in some high-frequency and analog 
applications because of their high transconductance and high 
speed.

Question: What is the meaning of  “bipolar” ?
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8.1  Introduction to the BJT
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Common-Emitter Configuration
Question: How does Ic vary with VBE ? VCB ?

Question: Why is IB often preferred as a parameter over VBE?
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8.2  Collector Current
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It can be shown

GB (s·cm4) is the base Gummel number

8.2  Collector Current
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Inverse slope is 
60 mV per decade, at low-
level injection

High-level injection effect :
p > NB , inverse slope is

kTqV
C

BEeI 2/∝120mV/decade or  

The IR drop across parasitic series resistance increases VBE at 
high IC and further flattens the curve.

Gummel Plot
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8.3  Base Current
Some holes are injected from the P-type base into the N+ emitter.
The holes are provided by the base current, IB .

emitter base collectorcontact

IE IC

electron flow –

+
hole flow

IB
pE' nB'

WE WB

(a)

(b)

contact
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Question: Is a large IB desirable? Why?

emitter base collectorcontact

IE IC

electron flow –

+
hole flow

IB

contact

8.3  Base Current

For a uniform emitter,



Slide 8-9Semiconductor Devices for Integrated Circuits (C. Hu)

8.4  Current Gain
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How can βF be maximized?

Common-emitter current gain, βF :

Common-base current gain:
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EXAMPLE: Current Gain

A BJT has IC = 1 mA and IB = 10 µA. What are IE, βF and αF?

Solution:

9901.0mA 01.1/mA 1/
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8.4.1  Emitter Bandgap Narrowing
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To raise βF, NE is typically very large. 
Unfortunately, large NE makes 22

iiE nn >
(called the heavy doping effect).

kTE
VCi

geNNn /2 −= Since ni is related to Eg , this effect is 
also known as band-gap 
narrowing. 

kTE
iiE

gEenn /22 ∆= ∆EgE is negligible for NE < 1018 cm-3, 
is 50 meV at 1019cm-3, 95 meV at 1020cm-3,
and 140 meV at 1021 cm-3.

Emitter bandgap narrowing makes it difficult to raise βF by 
doping the emitter very heavily.
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∝β To further elevate βF , we can raise niB by 
using an epitaxial Si1-ηGeη base.

With η = 0.2, EgB is reduced by 0.1eV and niE
2 by 30x.

8.4.2  Narrow-Bandgap (SiGe) Base
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Assume DB = 3DE , WE = 3WB , NB = 1018 cm-3, and niB
2 = ni

2. What is 
βF for (a) NE = 1019 cm-3, (b) NE = 1020 cm-3, and (c) NE = 1020 cm-3

and a SiGe base with ∆EgB = 60 meV ?

(a) At NE = 1019 cm-3, ∆EgE ≈ 50 meV,

(b) At NE = 1020 cm-3, ∆EgE ≈ 95 meV

(c) 
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EXAMPLE: Emitter Bandgap Narrowing and SiGe Base
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A high-performance BJT typically has a layer of As-doped N+

poly-silicon film in the emitter. 

βF is larger due to the large WE , mostly made of the N+ poly-
silicon. (A deep diffused emitter junction tends to cause emitter-
collector shorts.)

N-collector

P-base

SiO2

emitter
N+-poly-Si

8.4.3  Poly-Silicon Emitter
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Why does one want to operate BJTs at low IC and high IC?
Why is βF a function of VBC  in the right figure?

β F

From top to bottom:
VBC = 2V, 1V, 0V

8.4.4 Gummel Plot and βF Fall-off at High and Low Ic
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Hint: See Sec. 8.5 and Sec. 8.9.
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8.5   Base-Width Modulation by Collector Voltage

Output resistance :

C
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A large VA (i.e. a 
larger ro ) is desirable 
for a large voltage 
gain

IB3IC
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VA : Early Voltage IB2

IB1
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(Depletion region in 
collector is not shown)

How can we reduce the base-width modulation effect?

8.5   Base-Width Modulation by Collector Voltage

N+ P N
emitter base collector

VCE

CE

WB3

WB2

WB1

x

n'

}reduction of base width
VCE1< VCE2<VCE3

BVBE
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The base-width modulation 
effect is reduced if we

(A) Increase the base width,
(B) Increase the base doping 

concentration, NB , or
(C) Decrease the collector doping 

concentration, NC .

Which of the above is the most acceptable action?

8.5   Base-Width Modulation by Collector Voltage

N+ P N
emitter base collector

VCE

CE

WB3

WB2

WB1

x

n'

}reduction of base width
VCE1< VCE 2<VCE 3

BVBE
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8.6  Ebers-Moll Model

The Ebers-Moll model describes both the active 
and the saturation regions of BJT operation.

 IB IC

0 VCE

saturation
region

active region
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IC is driven by two two forces, VBE and VBC .

When only VBE is present : 
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Now reverse the roles of emitter and collector.
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βR : reverse current gain
βF : forward current gain

8.6  Ebers-Moll Model
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In general, both VBE and VBC are present :

In saturation, the BC junction becomes forward-biased, too. 

VBC  causes a lot of holes to be injected 
into the collector. This uses up much 
of IB. As a result, IC drops.

VCE (V)

8.6  Ebers-Moll Model
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8.7  Transit Time and Charge Storage 

C

F
F I

Q
≡τ

When the BE junction is forward-biased, excess holes are stored 
in the emitter, the base, and even in the depletion layers. 
QF is all the stored excess hole charge

τF determines the high-frequency limit of BJT operation.

τF is difficult to be predicted accurately but can be measured.



Slide 8-23Semiconductor Devices for Integrated Circuits (C. Hu)

8.7.1  Base Charge Storage and Base Transit Time

Let’s analyze the excess hole charge and transit time in 
the base only.
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What is τFB if WB = 70 nm and DB = 10 cm2/s?

Answer: 

2.5 ps is a very short time. Since light speed is 
3×108 m/s, light travels only 1.5 mm in 5 ps.

EXAMPLE: Base Transit Time

ps 5.2s105.2
/scm 102
)cm 107(

2
12

2

262

=×=
×
×

== −
−

B

B
FB D

Wτ
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The base transit time can be reduced by building into the base 
a drift field that aids the flow of electrons. Two methods:

• Fixed EgB , NB decreases from emitter end to collector end.

• Fixed NB , EgB decreases from emitter end to collector end.
-E B C

- BC
dx

dE

q
=

06730. D
rift T

ransistor–B
uilt-in B

ase FieldE
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8.7.3  Emitter-to-Collector Transit Time and Kirk Effect

Top to bottom : 
VCE = 0.5V, 0.8V, 
1.5V, 3V.

• To reduce the total transit time, the emitter as well as the depletion layers must be 
kept thin as well.

• Kirk effect or base widening: electron density in the collector (n = NC) is 
insufficient to support the collector current even if the electrons move at the 
saturation velocity-the base widens into the collector. Wider base means larger τF .
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Base Widening at Large Ic
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8.8  Small-Signal Model
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At 300 K, for example,
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This is the charge-storage capacitance, better known as the 
diffusion capacitance.
Add the depletion-layer capacitance, CdBE :

dBEmF CgC +=τπ

8.8  Small-Signal Model
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EXAMPLE: Small-Signal Model Parameters

A BJT is biased at IC = 1 mA and VCE = 3 V. βF=90, τF=5 ps, 
and T = 300 K. Find  (a) gm ,  (b) rπ ,  (c) Cπ .

Solution: 

(a)

(b) 

(c) 

siemens)(milliqkTIg Cm    mS 39
V

mA39
mV 26

mA 1)//( ====

kΩ 3.2
mS 39

90/ === mF gr βπ

ad)(femto fargC mF  fF 19F109.1039.0105 1412 =×≈××== −−τπ
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Once the model parameters have been determined, one can 
analyze circuits with arbitrary source and load impedance.

The parameters are routinely 
determined through comprehensive
measurement of the BJT AC
and DC characteristics.
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C
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 B
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8.9  Cutoff Frequency

The load is a short circuit. The signal source is a current source,
ib , at frequency, f. At what frequency does the current gain 

fall to unity?)/( bc ii≡β
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fT is commonly used to compare the speed of a transistor.
• Why does fT increase with increasing IC?
• Why does fT fall at high IC?

fT ∝ 1/(τF + CdBEkT/qIC)
8.9  Cutoff Frequency
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• Poly-Si emitter
• Thin base
• Self-aligned poly-Si base contact
• Narrow emitter opening
• Lightly-doped collector
• Heavily-doped epitaxial subcollector
• Shallow trench and deep trench for electrical isolation

BJT Structure for Minimum Parasitics and High Speed
B E C

p+ p+
P base

N collector

N+ subcollector

P− substrate

N+polySi

N+

Deep
trench

Deep
trench

Shallow
trench

P+polySiP+polySi
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In order to sustain a constant excess hole charge in the 
transistor, holes must be supplied to the transistor through IB
to replenish the holes lost to recombination at the above rate.
What if IB is larger than  ? FFFQ βτ/

FF

F
B

F QtI
dt

dQ
βτ

−= )(

Can find QF(t) for any given IB(t).

8.10   Charge Control Model

For the DC condition,
FF

F
FCB

QII
βτ

β == /

Can then find IC(t) through IC(t) = QF(t)/τF .
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EXAMPLE : Find IC(t) for a Step IB(t)

The solution of                                 is
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dt
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/
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What is ?)(  )?0(  ?)( ∞∞ FFB QQI
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E B C
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Visualization of QF(t)

FF

F
B

F QtI
dt

dQ
βτ

−= )(

QF (t)

QF/τFβF

IB( t)
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8.11 Model for Large-Signal Circuit Simulation

• Model contains dozens of parameters, mostly determined 
from measured BJT data.

• Circuits containing tens of thousands of transistors can be 
simulated.

• Compact model is a “contract” between 
device/manufacturing 
engineers and circuit designers.
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A commonly used BJT circuit simulation model is the
Gummel-Poon model, consisting of

• Ebers-Moll model (two diodes and two driving forces for IC)
• Enhancements for high-level injection and Early effect
• Voltage-dependent capacitances representing charge storage
• Parasitic resistances 

8.11 Model for Large-Signal Circuit Simulation
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8.12  Chapter Summary
• The base-emitter junction is usually forward-biased while 

the base-collector is reverse-biased. VBE determines the 
collector current, IC .
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• GB is the base Gummel number, which represents all the 
subtleties of BJT design that affect IC. 
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8.12  Chapter Summary
• The base (input) current, IB , is related to IC by the 

common-emitter current gain, βF . This can be related to 
the common-base current gain, αF .

B

E
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C
F G

G
I
I

≈=β

• The Gummel plot shows that βF  falls off in the high IC
region due to high-level injection in the base. It also falls 
off in the low IC region due to excess base current.

F

F

E

C
F I

I
β

βα
+

==
1

• Base-width modulation by VCB results in a significant slope 
of the IC vs. VCE curve in the active region (known as the 
Early effect). 
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8.12  Chapter Summary
• Due to the forward bias VBE , a BJT stores a certain amount 

of excess carrier charge QF which is proportional to IC. 

FCF IQ τ≡

τF is the forward transit time. If no excess carriers are stored 
outside the base, then

• The charge-control model first calculates QF(t) from IB(t) 
and then calculates IC(t).

B

B
FBF D

W
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2

==ττ

FF

F
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FFC tQtI τ/)()( =

, the base transit time.
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8.12  Chapter Summary

The small-signal models employ parameters such as 
transconductance, 

q
kTI
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dIg C
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m /=≡

input capacitance,

and input resistance.
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