# Chapter 9 Metal-Semiconductor Contacts

Two kinds of metal-semiconductor contacts:

- metal on lightly doped silicon –
- rectifying Schottky diodes
- metal on heavily doped silicon –
- low-resistance ohmic contacts

## 9.1 Schottky Barriers

Energy Band Diagram of Schottky Contact



-  $E_c = E_c$ -  $E_f$  is a function of the metal material.

•  $\phi_B$  is the single most •  $\phi_B$  is the single most important parameter. The sum of  $q \phi_{Bn}$  and  $q \phi_{Bp}$  is equal  $E_f$  to  $E_g$ .

Semiconductor Devices for Integrated Circuits (C. Hu)

#### Schottky barrier heights for electrons and holes

| Metal           | Mg  | Ti   | Cr   | W    | Mo   | Pd   | Au  | Pt  |
|-----------------|-----|------|------|------|------|------|-----|-----|
| $\phi_{Bn}$ (V) | 0.4 | 0.5  | 0.61 | 0.67 | 0.68 | 0.77 | 0.8 | 0.9 |
| $\phi_{Bp}$ (V) |     | 0.61 | 0.5  |      | 0.42 |      | 0.3 |     |
| Work            |     |      |      |      |      |      |     |     |
| Function        | 3.7 | 4.3  | 4.5  | 4.6  | 4.6  | 5.1  | 5.1 | 5.7 |
| ψ m (V)         |     |      |      |      |      |      |     |     |

 $\phi_{Bn} + \phi_{Bp} \approx 1.1 \text{ V}$ 

 $\phi_{Bn}$  increases with increasing metal work function



## $\phi_{Bn}$ is typically 0.4 to 0.9 V



• A high density of energy states in the bandgap at the metalsemiconductor interface pins  $E_f$  to a range of 0.4 eV to 0.9 eV below  $E_f$ 

• *Question*: What is the typical range of  $\phi_{Bp}$ ?

Semiconductor Devices for Integrated Circuits (C. Hu)

## Schottky barrier heights of metal silicide on Si

| Silicide        | ErSi <sub>1.7</sub> | HfSi | MoSi <sub>2</sub> | ZrSi <sub>2</sub> | TiSi <sub>2</sub> | CoSi <sub>2</sub> | WSi <sub>2</sub> | NiSi <sub>2</sub> | Pd <sub>2</sub> Si | PtSi |
|-----------------|---------------------|------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|--------------------|------|
| $\phi_{Bn}$ (V) | 0.28                | 0.45 | 0.55              | 0.55              | 0.61              | 0.65              | 0.67             | 0.67              | 0.75               | 0.87 |
| $\phi_{Bp}$ (V) |                     |      | 0.55              | 0.49              | 0.45              | 0.45              | 0.43             | 0.43              | 0.35               | 0.23 |

Silicide-Si interfaces are more stable than metal-silicon interfaces. After metal is deposited on Si, an annealing step is applied to form a silicide-Si contact. The term *metal-silicon contact* includes silicide-Si contacts.



Semiconductor Devices for Integrated Circuits (C. Hu)



9.2 Thermionic Emission Theory







![](_page_11_Figure_0.jpeg)

- $I_0$  of a Schottky diode is  $10^3$  to  $10^8$  times larger than a PN junction diode, depending on  $\phi_B$ . A larger  $I_0$  means a smaller forward drop V.
- A Schottky diode is the preferred rectifier in low voltage, high current applications.

## Switching Power Supply

![](_page_12_Figure_1.jpeg)

*Question*: What sets the lower limit in a Schottky diode's forward drop?

*Synchronous Rectifier*: For an even lower forward drop, replace the diode with a wide-W MOSFET which is not bound by the tradeoff between diode *V* and  $I_0$ :  $I = I_0 e^{qV/kT}$ 

# 9.4 Applications of Schottky Diodes

There is no minority carrier injection at the Schottky junction. Thus, the CMOS latch-up problem can be eliminated by replacing the source/drain of the NFET with Schottky junctions.

In addition, the Schottky S/D MOSFET would have shallow junctions and low series resistance. So far, Schottky S/D MOSFETs have lower performance.

![](_page_13_Figure_3.jpeg)

Semiconductor Devices for Integrated Circuits (C. Hu)

GaAs MESFET

![](_page_14_Figure_1.jpeg)

The MESFET has similar IV characteristics as the MOSFET, but does not require a gate oxide.

*Question*: What is the advantage of GaAs over Si?

## 9.5 Ohmic Contacts

![](_page_15_Figure_1.jpeg)

Semiconductor Devices for Integrated Circuits (C. Hu)

![](_page_16_Figure_0.jpeg)

After the spacer is formed, a Ti or Mo film is deposited. Annealing causes the silicide to be formed over the source, drain, and gate. Unreacted metal (over the spacer) is removed by wet etching.

#### Question:

- What is the purpose of siliciding the source/drain/gate?
- What is self-aligned to what?

## **9.5** Ohmic Contacts N<sup>+</sup> Si Silicide $W_{dep} = \sqrt{\frac{2\varepsilon_s \phi_{Bn}}{aN}}$ $\phi_{Bn}$ $\frac{V}{-V_{-}}E_{c}, E_{f}$ $----E_c$ , $E_f$ $E_{fm}$ Tunneling probability: *E*.. $E_{v}$ $P = e^{-H\phi_{Bn}/\sqrt{N_d}}$ -x- X $H = 4\pi \sqrt{\varepsilon_s m_n} / h = 5.4 \times 10^9 \sqrt{m_n} / m_o \text{ cm}^{-3/2} \text{V}^{-1}$ $J_{S \to M} \approx \frac{1}{2} q N_d v_{thx} P = q N_d \sqrt{kT / 2\pi m_n} e^{-H(\phi_{Bn} - V) / \sqrt{N_d}}$

Semiconductor Devices for Integrated Circuits (C. Hu)

## 9.5 Ohmic Contacts

![](_page_18_Figure_1.jpeg)

Semiconductor Devices for Integrated Circuits (C. Hu)