UNIVERSITY OF CALIFORNIA, BERKELEY

College of Engineering

Department of Electrical Engineering and Computer Sciences

EE 130/230M

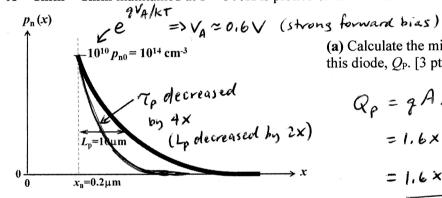
Integrated Circuit Devices

Spring 2013 Prof. Liu & Dr. Xu

OUIZ #4

Time allotted: 25 minutes

NAME: Signature (print) First


- STUDENT ID#:
- 1. Use the values of physical constants provided below.
- 2. SHOW YOUR WORK, and write legibly!
- 3. Underline or box numerical answers, and specify units where appropriate.

Physical Constants		
Description	Symbol	Value
Electronic charge	q	1.6×10 ⁻¹⁹ C
Thermal voltage at 300K	kT/a	0.026 V

Properties of silicon (Si) at 300K			
Description	Symbol	Value	
Energy band gap	$E_{ m G}$	1.12 eV	
Intrinsic carrier concentration	$n_{\rm i}$	10 ¹⁰ cm ⁻³	
Permittivity	ε _{Si}	1.0×10 ⁻¹² F/cm	

Problem 1 [13 points] One-sided pn Junction

The excess hole concentration within the quasi-neutral n-type region of a silicon p⁺n step junction of area A = 1mm × 1mm maintained at T = 300K is plotted on a linear scale below. The hole lifetime $\tau_p = 10^{-6}$ s.

(a) Calculate the minority-carrier charge stored in this diode, Q_P . [3 pts]

$$Q_{p} = q A \Delta p_{n}(x_{n}) L_{p}$$

$$= 1.6 \times 10^{-19} \times 10^{-2} \times 10^{14} \times 10 \times 10^{-4}$$

$$= 1.6 \times 10^{-10} C$$

(b) Calculate the diode current, *I*. [3 pts

$$I = \frac{Q_p}{\gamma_p} = \frac{1.6 \times 10^{-10}}{10^{-6}} = 1.6 \times 10^{-4} A = 0.16 \text{ mA}$$

(c) Estimate the small-signal capacitance, C, of this junction. [3 pts]

$$C \simeq C_0 \text{ under strong forward bies}$$

$$C = \frac{T_p I}{(kT/2)} = \frac{10^{-6} \times 1.6 \times 10^{-4}}{0.026} = 64 \times 10^{-10} = 6.4 \text{nF}$$

(d) Show on the plot above how $p_n(x)$ would change if τ_p were to be decreased by a factor of 4. [2 pts] Qualitatively, how would the diode turn-off transient response change? Explain briefly. [2 pts] The storage delay time would be reduced (hence the diode

would turn off more quickly) because there are fewer holes stored and they die out more rapidly due to recombination.

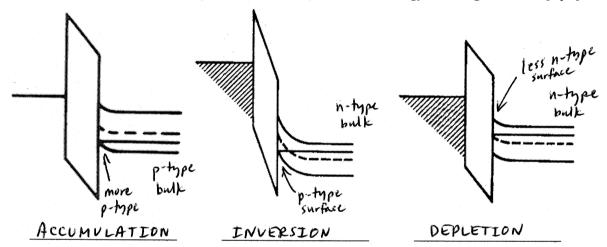
Problem 2 [5 points] Optoelectronic Diodes

Circle the correct choices in the sentences below.

- (a) Light is generated in a light-emitting diode or photodiode] when it is operated under forward or reverse] bias due to [generation or recombination] within the [depletion region or quasi-neutral regions]. [2 pts]
- (b) The amount of electric power generated by a solar cell [increases or decreases] with an increase in temperature (e.g. in the range from 300K to 400K). [1 pt]

Justify your answer. [2 pts]

The open-circuit voltage (Voc) decreases with increasing temperature, due to an increase in ni.


The short-circuit current (Isc) decreases with increasing temperature, due to = reductions in Lp and Ln since Dp and Dn are degraded, (Mp and Mn decrease with increasing T.)

maximum power output decreases

Īsc

Problem 3 [7 points] MOS Capacitor

(a) Identify the bias condition (accumulation, depletion, or inversion) for the MOS energy-band diagrams below [3 pts]

Bias Condition:

(b) Consider a MOS capacitor with 3.45 nm = 3.45×10^{-7} cm SiO₂ and p-type Si with N_A = 10^{17} cm⁻³ maintained at 300K. The flatband voltage $V_{\rm FB}$ = -0.8V. **Calculate the threshold voltage**, $V_{\rm T}$. [4 pts] (Note: The permittivity of SiO₂ is 3.45×10^{-13} F/cm.)

$$C_{0x} = \frac{\epsilon_{0x}}{\chi_{0x}} = \frac{3.45 \times 10^{-13}}{3.45 \times 10^{-1}} = 10^{-6} \, \text{F/cm}^2$$

$$\Phi_F = \frac{kT}{q} \ln \left(\frac{NA}{n_i} \right) = \frac{kT}{g} \ln \left(\frac{10^{17}}{10^{10}} \right) = 7 \times 0.026 \ln (10) = 7 \times 60 \, \text{mV} = 0.42 \, \text{V}$$

$$Q_{dep} = q N_A W_T = \sqrt{q} N_A 2 \varepsilon_{si} \left(2\phi_F \right) = \sqrt{(1.6 \times 10^{-12})(2 \times 10^{-12})(2 \times 0.42)}$$

$$= \sqrt{1.6^2 \times 10^{-14}} = 1.6 \times 10^{-7} \, \text{C/cm}^2$$

$$V_T = V_{FB} + 2\phi_F + \frac{Q_{dep}}{C_{0x}} = -0.8 + 2(0.42) + \frac{1.6 \times 10^{-7}}{10^{-6}}$$

$$= -0.18 + 0.84 + 0.16 = 0.2 \, \text{V}$$