1. OPA334

a. From the data sheet, we see that

\[V_{ss} - 0.1V < V_{cm} < V_{dd} - 1.5V \]

The input common mode voltage must remain at least 1.5V below vdd. The input common mode voltage can be below Vss.

\[V_{ic, \text{max}} = V_{dd} - 1.5 \]
\[V_{ic, \text{min}} = V_{ss} - 0.1 \quad (V_{ic, \text{min}} < 0 \text{ if } V_{ss} = 0) \]

What kind of topology is it?

For a simple differential amplifier, \(V_{ic, \text{min}} = V_T + 2V_{dsat} + V_{ss} > 0 \) (if \(V_{ss} = 0 \))
but our data sheet says \(V_{ic, \text{min}} = V_{ss} - 0.1 = -0.1 \) (if \(V_{ss} = 0 \)).
Since these 2 facts contradict each other, the topology can not be a simple differential amp.

For a telescopic amplifier, \(V_{ic, \text{min}} = V_T + 2V_{dsat} + V_{ss} > 0 \) (if \(V_{ss} = 0 \)).
The same analysis applies. So it's not a telescopic amplifier.

For a folded cascode amplifier with nmos transistors as the input pair,
\(V_{ic, \text{min}} = V_T + 2V_{dsat} + V_{ss} > 0 \) (if \(V_{ss} = 0 \)).
But our data sheet says \(V_{ic, \text{min}} < 0 \). Contraction!

For a folded cascode amplifier with pmos transistors as the input pair,
\(V_{ic, \text{min}} = V_{dsat} - V_T + V_{ss} \).
We see that we can meet this spec if \(V_T > V_{dsat} + 0.1 \)
Since the output range is fairly large, this means the output is driven by an output stage. It could be an inverter, or maybe a common source.

b. Typical value:
Low frequency gain = 130 dB

\[130 \text{ dB} = 20 \text{ dB} \times \log (A_v) \]
\[A_v \approx 3.16 \times 10^6 \text{ Volts/Volts} \]

c. As we can see on the following plot, phase margin is 80 degrees.
d. Output voltage range when output current = 1mA is about from Vss+0.1 to Vdd-0.1. Very close to rail to rail swing.
Problem 2.

a. **RAIL-TO-RAIL INPUT**

The input common-mode voltage range of the OPA340 series extends 500mV beyond the supply rails. This is stated in the data sheet.

\[
V_{ic,\text{max}} = V_{dd} + 0.5 \\
V_{ic,\text{min}} = V_{dd} - 0.5
\]

b.

\[G_m \]

\[V_{dsat} - V_t \]

\[V_{dd} - V_t - 2V_{dsat} \]

\[V_{dd} \]

Assuming \(V_{ss} = 0 \)

\[V_{ic} \]

One method of improving capacitive load drive in the unity gain configuration is to insert a 10Ω to 20Ω resistor in series with the output, as shown in Figure 4. This significantly reduces ringing with large capacitive loads. However, if there is a resistive load in parallel with the capacitive load, it creates a voltage divider introducing a dc error at the output and slightly reduces output swing. This error may be insignificant. For instance, with \(RL = 10k\Omega \) and \(RS = 20\Omega \), there is only about a 0.2% error at the output.
Problem 3.

0. Minimum allowable supply rail: (We look where there is the most transistors).
This could be the right side or the left side. But by observation, its possible to have all the transistors on the right side in saturation by leaving exactly V_{dsat} for each v_{ds}. This implies that $V_{dd,\text{min}} = 4 \cdot V_{dsat} = 0.4$. However, this will cause some of our transistors on the left side to go into triode.

Looking at the left side, the gate voltage of M_{4L} is $V_{gs4} = V_{t} + V_{dsat}$.
This implies the drain voltage of M_{3L} is $V_{t} + V_{dsat}$ since a wire connects the gate of M_{4L} to this node.

Looking up from the drain of M_{3L}, we can bias our circuit such we leave exactly v_{dsat} across M_{2L} and M_{5L}. This implies the minimum V_{dd} required to bias all the transistors on the left side in saturation is equal to $V_{t} + V_{dsat} + V_{dsat} + V_{dsat} = V_{t} + 3 \cdot V_{dsat}$.

Now we can double check that indeed we can bias all the other transistors in the circuit in saturation if we use $V_{dd} = V_{t} + 3 \cdot V_{dsat}$.

How to design the supply independent biasing network:

If you are reading my solutions, you should look at the circuit diagram and try to follow along.

1. Pick currents for the folded cascode and decide on a v_{dsat}.
 I pick 200uA. For M_{5}, and V_{bt5}, 100uA for transistors 1,2,3,4.
 Reason: 100uA seems like a good number to work with.

 Pick $V_{dsat} = 100\text{mV}$
 Reason: $gm = \frac{2 \cdot I_{d}}{V_{dsat}}$, we want to use the smallest V_{dsat} to maximize gm.
 Also, since i will design my output range to swing within $2\cdot V_{dsat}$ from each rail, if i make v_{dsat} small, it improves my swing at the output.

 Since 300mV within the rails is the spec, this implies $2 \cdot V_{dsat} < 300\text{mV}$
or $V_{dsat} < 150\text{mV}$ (for the transistors in the same branch as the output).

For my tail current source, $M5T$, I pick a v_{dsat} of 200mV, it turns out it will be easier for me to bias it in this way.

2. Design the supply independent current source.
 Sizing: $MB1$, $MB2$, $MB3$, $MB4$, and RS

 \[I_d = \frac{W}{2L} Kp (V_{dsat})^2 \], I neglect the $1+\lambda$ because I plan to use large L values.

 To make calculations easier, I've decided to aim for 200uA in the biasing network as well.

 I plan to use the gate voltage of $MB4$ to bias the gate of $M5$. So I will set the v_{dsat} of $MB4$, $MB3 = 100\text{mV}$.

 This implies $(W/L)4$, $(W/L)3 = 400$ ($40000\text{um}/100\text{um}$)

 In order to make the current invariant from changes of v_{dd}. I pick $L3$, $L4 = 100\text{um}$.

 Formula given in Razavi:
 \[\frac{\delta I}{\delta V_{dd}} = \frac{1}{\alpha \rho \omega}, \text{ from Razavi (chapter 11)} \]

 bigger L --> bigger ω. --> more stable current source.

 For $MB1$, I pick a $v_{dsat1} = 200\text{mV}$, since its gate voltage will be used to bias $VB5T$.

 \[I_d = \frac{W}{2L} Kn (V_{dsat})^2 \] \[\implies \text{(W/L)}1 = 50. \text{ (500um/10um)} \]

 We also use a relatively large L value for $(W/L)1$ and $(W/L)2$ to reduce λ. This gives us a better current source.

 Now, I choose $(W/L)2= 4 (W/L)1$ (2000um/10um)

 \[\implies V_{dsat2} = \frac{1}{2} V_{dsat1} = \frac{1}{2} \times 200\text{mV} = 100\text{mV} \]

 To size RS:

 Do KCL, around the loop. I is picked to be 200uA.

 \[V_t + v_{dsat1} - (V_t+v_{dsat2}) - I \cdot RS = 0 \]

 \[\implies 200\text{mv}-100\text{mV} = I \cdot RS \]

 \[\implies RS = 100\text{mV} / 200\text{uA} = 500 \text{ Ohms} \]

 Spice results:
 Supply independent current source:

 \[
 \begin{array}{ll}
 \text{volt} & \text{iref} \\
 2.00000 & 198.8411\text{u} \\
 3.00000 & 200.8357\text{u} \\
 4.00000 & 202.8120\text{u} \\
 \end{array}
 \]
3. Create the other biasing circuitry.
 Sizing MB5, MB6, MB7, MB8.

 Once you have a stable reference voltage, there is some flexibility how you design the other parts of the biasing network.
 First, let's use MB5 and MB6 to create V_{bcp}.

 We can size MB5 to be the same size as MB1. This gives us a steady 200uA reference current to work with. \(\frac{W}{L}_5 = \frac{W}{L}_1 \) \((500\mu m / 10\mu m)\)

 Now the question is, how do we size MB6?
 The purpose of sizing MB6 is to create a V_{bcp} to bias our folded cascode in a high swing mode.
 If we bias it correct, V_{out} will be able to go up within 2 V_{dsat} of v_{dd} while keeping all the transistors in saturation.

 We also need to leave at least V_{dsat} for the V_{ds} of transistors M5L and M5R.
 This means gate voltage of M2L and M2R needs to be set at $V_{dd} - V_{dsat} - (V_{t} + V_{dsat})$
 $V_{bcp} = V_{dd} - V_{t} - 2V_{dsat}$.

 The V_{bcp} is generated by MB6, and its equal to $V_{dd} - V_t - V_{dsat6}$.
 We see that we can get the appropriate voltage if we set $V_{dsat6} = 2 \times V_{dsat}$.
 Where V_{dsat} is the V_{dsat} that I picked for transistors in the folded cascode. \((100mV)\).

 \[
 V_{dsat} = \sqrt{\frac{2I}{KP\frac{W}{L}}} \]

 Use this equation to calculate W/L ratios and V_{dsats}.

 By looking at this equation, we see that if we wanted to generate 2 V_{dsat}, we should use \((W/L)_6 = (\frac{1}{4}) \times (W/L)_{5_folded,cascode}\).

 However there is a problem with the above scheme.
 Problem: This biasing scheme biases the drain of M5L and M5R at almost exactly $V_{dd} - V_{dsat}$.
 M5L and M5R are sitting on the edge between saturation and triode, and any disturbance could bring them into triode (such as raising the v_{dd} to 15V).
 Solution: Bias the the gate of M2L and M2R at a slightly lower voltage.
Instead of using $V_{dd-Vt-2V_{dsat}}$ to bias V_{bcp}, we can set

$$V_{bcp} = V_{dd} - V_{t} - 2\sqrt{2}V_{dsat}$$

I picked this value since if we set

$$(W/L)6 = \frac{1}{8} * (W/L)5_{\text{folded, cascode}}$$

This sets the drain of M5 to

$$V_{dd} - V_{t} - 2\sqrt{2}V_{dsat} + (V_{t} + V_{dsat}) \approx V_{dd} - 180\text{mV}$$

From the drain of M5, we have to get through another transistor to get to the output node, and since $v_{dsat} \sim 100\text{mV}$, it will allow our V_{out} to get up to $V_{dd}-300\text{mV}$ while all transistors are in saturation.

Sizing MB8 and MB7 is exactly the same method as sizing MB6 and MB5.

First, I sized MB8 by mirroring MB4, but using half of the current.

$$(W/L)8 = \frac{1}{2} *(W/L)4.$$

Reason: the transistors that I am trying to bias (nmos M3L, and M3R) are using 100uA. Its slightly easier if currents are matched.

Now I sized MB7 to bias V_{bcn}.

$$V_{bcn} = V_{t} + 2\sqrt{2}V_{dsat}.$$ The analysis is the same as above.

This imples

$$(W/L)7 = \frac{1}{8} * (W/L)3_{\text{folded, cascode}}$$

This completes our biasing network.

4. Size the transistors for the folded cascode:

I do not intend to post my transistor sizing for the folded cascode.

This is for your project =).

You maybe be able to figure out most of the W/L ratios just from the biasing structure I've used.

5. Testing the Circuit.

Spice code:

```
*HW7 Problem 3
.options nomod accurate=1 post
.op
.lib 'ee140_model_level1.lib' TT
.global vdd vss 
vss vss 0 0
vdd vdd 0 2 

.subckt my_reference vbcn vb5 vb5t
xmb4 vb5t vb5 vdd vdd pmos w=40000u l=100u
xmb3 vb5 vb5 vdd vdd pmos w=40000u l=100u
xmb1 vb5t vb5t vss vss nmos w=500u l=10u
xmb2 vb5 vb5t s2 s2 nmos w=2000u l=10u
rs s2 vss 500

xmb5 vbcn vb5 vb5t vss nmos w=500u l=10u
xmb6 vbcn vbcn vdd pmos w=50u l=1u

xmb8 vbcn vb5 vdd vdd pmos w=2000u l=10u
xmb7 vbcn vbcn vss vss nmos w=125u l=10u
```
.subckt start_up vb5t vb5
xinvp gate vb5t vdd vdd pmos w=1u l=1000u
xinvn gate vb5t vss vss nmos w=1000u l=1u
xpulldown vb5 gate vss vss nmos w=1u l=1u
.ends

.subckt folded_cascode vb5 vb5t vbcp vbcn vp vn out
*sizing this amplifier will be your project =)
xm1l dp vp middle middle nmos w=?? l=1u
xm1r dn vn middle middle nmos w=?? l=1u
xm5t middle vb5t vss vss nmos w=?? l=1u

xm5l dp vb5 vdd vdd pmos w=?? l=1u
xm5r dn vb5 vdd vdd pmos w=?? l=1u
xm2l d2 vbcp dp dp pmos w=?? l=1u
xm2r out vbcp dn dn pmos w=?? l=1u
xm3l d2 vbcn s3l s3l nmos w=?? l=1u
xm3r out vbcn s3r s3r nmos w=?? l=1u
xm4l s3l d2 vss vss nmos w=?? l=1u
xm4r s3r d2 vss vss nmos w=?? l=1u
.ends

xamp vb5 vb5t vbcp vbcn vp vn out folded_cascode
xref vbcp vbcn vb5 vb5t my_reference
xstart vb5t vb5 start_up

.param offset=offset_1_7 *use one of the values from below.

vic vn vss 1
vid vp vn dc=offset ac=1

cl out 0 50pf

.param offset_1_7=0.0000786 * vdd =2 ,vout=1.7
.param offset2_03= -0.000022 * vdd=2 vout=0.3
.param offset15_03= -0.000008 * vdd=15 vout=0.3
.param offset15_14_7=0.0003845 * vdd=15 vout=14.7

.tf v(out) vid

.ac dec 100 1 10g
*.dc offset -0.000030 -0.000005 0.0000001
*.print vout=par('v(out)')
*.dc vdd 2 15 1
Plots:

You should have 4 plots, one for each case:
Vdd=15V Vout=14.7
Vdd=15V Vout=0.3
Vdd=2V Vout=1.7
Vdd=2V Vout=0.3

I will only provided this one since the other plots look similar.

Vdd=2V Vout=1.7
Folded cascode

\[I_{d2L} = I_{d5L} - I_{d1L} \]
\[= I_{d5L} - \left(\frac{I_{d5T}}{2} + g_m V_id / 2 \right) \]
\[I_{d2R} = I_{d5R} - I_{d1R} \]
\[= I_{d5R} - \left(\frac{I_{d5T}}{2} - g_m V_id / 2 \right) \]

Startup circuit (avoid \(I_{b1} = I_{b2} = 0 \))

Supply independent Bias voltage generation

\(Vdd \)

\(V_{B5} \)

\(V_{BST} \)

\(V_{BCN} \) or \(V_{BST} \)

\(W/L = 40000 \mu m/100 \mu m \)

\(W/L = 5000 \mu m/10 \mu m \)

\(W/L = 1250 \mu m/10 \mu m \)

\(W/L = 10000 \mu m/1000 \mu m \)

\(W/L = 50000 \mu m/1000 \mu m \)

\(W/L = 1000 \mu m/1 \mu m \)

\(W/L = 2000 \mu m/10 \mu m \)

\(W/L = 50 \mu m/1 \mu m \)

\(W/L = 2000 \mu m/10 \mu m \)

\(W/L = 100 \mu m/1 \mu m \)