Lecture 26w: Feedback By Inspection

Lecture 26: Feedback By Inspection

- Announcements:

- HW\#11 online soon, due 12/9 @ 8 a.m.
- Pre-Lecture Feedback Loading Handout online
- "Inspection Analysis of Feedback Circuits" Handout online
- Lab\#3 (Design Project) due Friday, Dec. 11, at 11:59 p.m. in the 140/240a homework box
$\left.{ }^{4}\right)$ For 240A: use resistor temperature coefficients previously given in lecture
$\left.{ }^{4}\right)$ Best to be finished with design by next Monday, so you have plenty of time to write the report
$\left.{ }^{\text {B }}\right)$ Make sure the report is good, since it is what is graded in the end
Will discuss Final Exam next lecture
- Lecture Topics:
$\stackrel{y}{\wedge}$ Effect of $F B$ on Z_{i} and Z_{0}
$\stackrel{4}{4}$ Feedback Loading
²) Feedback By Inspection

- Last Time:

- Effect of FB on Z_{i} and $Z_{\text {o }}$
- Continue with this

Effed of $F B$ on $z_{i} ; z_{0}$

Ex. senier-Shunt FB
Arsumption: $F B$ netwan has ideal inpodonces $S_{\text {i.e., it doer nut lood the baric amplifies }}$

Find theT.F:

$$
\begin{aligned}
& \left.\begin{array}{l}
v_{\varepsilon}=v_{i}-N_{f b} \\
v_{0}=a_{N} N_{\varepsilon} \\
N_{f b}=f N_{0}
\end{array}\right\} \quad \begin{array}{l}
v_{i}=a_{N}\left(v_{1}-f v_{0}\right) \\
\quad \frac{v_{0}}{v_{i}}=\frac{a_{N}}{1+a_{r f}}
\end{array} \sqrt{\text { (aspectad) }}
\end{aligned}
$$

Find $z_{0}: \frac{N_{x}^{\prime}}{i_{x}^{\prime}}$:
$\frac{N_{x}^{\prime}}{i_{x}^{\prime}}: z_{0 c}\left(1+o_{i}, f\right)=z_{0}$
4 series convection raises the impodane by a facts (1+aif)!

Summand, shunt-senier maker for a betta $i+i$ omphífies!

Summon,
(1) Serer connection: $z \rightarrow z(1+T)$
(2) shunt conrochion! $z \rightarrow \frac{z}{(1+T)}$

- Now go through the "Loading from the FB Network" Handout

Determine the FB loading of an Amplfici
Example. Non- Inverting Ampler

Series
shunt,

Objective: $u_{s e} A_{0}=\frac{a_{N}}{1+a_{N} f}$ to get A_{0}.
In orch to we this equation, we must know (i) $a_{N} \stackrel{\Delta}{=}$ gain of the amplifice
(ii) $f \triangleq$ gain ρ the feedback (avo, called the feed bod fact)

But to simplify things,
we wind like to be able to represent the feedback return by jut:

whee: (1) The small h_{2} is reglactad.
(2) All impedoncer haw been more out of the f-netwat and maned to the a_{N}-hetwok.)

Pictorially:

The FB Network: (find the h-parameta representation)

Lecture 26w: Feedback By Inspection

So we have:

Lecture 26w: Feedback By Inspection

we have: $f=\frac{R_{E}}{R_{E}+R_{f}}$
Get closedloop gam A0; if aulos wifi= large $A_{0}=\frac{N_{0}}{N_{i}}$

What about $z_{i}\left\{z_{0}\right.$?
\Rightarrow Fer the opentlop op amp wi FB loading:

What about $\omega_{-3 / 15}$?

Copyright © 2015 Regents of the University of California

Lecture 26w: Feedback By Inspection

- Go through the "Inspection Analysis of Feedback Circuits" Handout
In the end, if one can determine the open loop gain with FB loading and feedback factor, then the rest of the problem becomes simple
Study the table in the handout
${ }_{\wedge}>$ Be able to fluently go between different types of gain, from $v \rightarrow v$, to $i \rightarrow v$, etc.

