
Note 4: Frequency Response and the Cascode

Rohit J. Braganza

Abstract Remember those parasitic capacitors? We will now take them into ac-
count. The reader may remember we listed four noticeable parasitics: the two fring-
ing capacitances, Cgs and Cgd , and the two substrate capacitances, Csb and Cdb. Say
we wish to know the frequency response of the LT1008 below, and maybe sketch
a Bode plot. As before, we have two options: 1, we could draw all four capacitors
for each transistor and do some quick Nodal analysis with 172 capacitors, some
resistors, and some jω’s here and there. Or there’s the other option...

Fig. 1 The LT1008 returns.1[1]
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1 Living in a RC World: The Open-Circuit Time Constant
Method

Ideally every circuit would look something like that seen in Fig. 2: the simple RC
circuit, perfect for the lazy- whoops I meant hard working- analog designer!

Fig. 2 The simple RC circuit
we can all solve. τ = RC.
Doesn’t get much better than
that.

We will use the Open Circuit Time Constant method (OCTC) to convert our
complicated circuits down to this nice simple circuit we can all solve.

Open Circuit Time Constant Method:

Step 1 Zero all sources, and short all AC-Coupling capacitors (caps of very
large magnitude, in the signal path).

Step 2 Replace capacitor of interest with a test voltage or current. Open all
other capacitors.

Step 3 Find the equivalent resistance seen by the capacitor, Req =Vtest/Itest .
The capacitor’s time constant is then given by τ = ReqC

Step 4 Repeat for all other Caps!

Fig 3. gives a simple example.

Fig. 3 Using OCTC for the leftmost circuit. The middle picture results in τ2 = (R1 +R2)C2. The
rightmost: τ1 = R1C1

What information exactly does the OCTC give us? It gives us an estimate of the
poles in a circuit, as well as the 3dB point of a circuit. More precisely, the 3dB point
is at: ω3dB ≈ 1

∑i τi
, where τi represents the i-th time constant. This approximation

1 It’s still probably a bit intimidating, but that’s okay- we haven’t covered differential pairs yet.
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works well when one time constant is larger than all the others; in the worst case,
for a two pole system, it can give a corner frequency twice as low as the actual,
when the time constants are equal to each other. A thorough explanation of why
this method works would take up the entire notesheet- the reader is instead highly
recommended to read [2] and [3]. We will instead focus on how we can apply this
method to our analysis.

1.1 Frequency Response of the Common Source- sans Cgd

Fig. 4 The common source
with parasitics, except for
Cgd . The load is modeled as a
capacitor, Cload . The substrate
is assumed to be grounded.

Without Cgd , and with the help of the OCTC it is easy to determine the poles the
circuit. First notice Csb is shorted out (not shown). Looking at Cgs, this capacitor
“sees” a resistance of Rs.

∴ ∃ A pole at: s = 1/(RS(Cgs)) (1)

Or, equivalently2, a time constant at: τ = RS(Cgs) (2)

Likewise, at the drain, we see the combined capacitance of Cload +Cdb, and a resis-
tance of Rd ‖ ro.

∴ ∃ An output time constant at: τ = (Rd ‖ ro)(Cdb +Cload) (3)

2 This is not exactly true. The pole gives the time constant only in a single pole circuit. However,
for now, we pretend that the time response mirrors a one pole system even though we have many
poles. This works surprisingly well for most op-amps.
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1.2 The big, bad & ugly Cgd- the Miller Cap

Things get a little bit more complicated when we consider Cgd : looking at Fig. 5,
notice that the OCTC would not seem to help much at all- the test source we would
replace for the capacitor would not be grounded (always a pain, and reserved mainly
for first level circuits classes only), and not to mention that there is the gain cell as
well. To solve this issue, we use a handy theorem: Miller’s Theorem.

Fig. 5 Now we include all
parasitics, including Cgd .
Finding the pole for Cgd
with the OCTC would be ex-
tremely complicated. Notice
how the transistor creates a
current that depends on the
source- the capacitor is es-
sentially in feedback with an
amplifier.

Miller’s Theorem Consider the circuit below:

Fig. 6 A generic gain
block with gain Av and an
impedance Z in feedback.

Let’s find the input impedance:

Zin =
Vin

Iin
=

VinZ
Vin−AvVin

=
Z

1−Av
(4)

And likewise, the output impedance:

Zout =
Z

1− 1
Av

(5)
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Miller’s Theorem for Capacitors
We know for a capacitor: Z = 1/sC

=⇒ Zin =
1

s(1−Av)C
(6)

Zout =
1

s(1− 1
Av
)C

(7)

Notice that for a capacitor, if Av < −1, looking into the input we see a larger
capacitance, by a factor of (1−Av)! From the output however, so long as |Av| � 1,
we essentially see the same capacitance.

Let’s now see how we can apply the Miller Theorem to our Cgd problem. We first
note that we can consider the transistor as a gain element.

Fig. 7 Figure 6- but with a
triangle! Note we left out the
substrate caps for clarity.

We can now apply Miller’s theorem to Cgd , as seen in Fig. 8.
Remember how the common source has an inverting gain? Well, unfortunately,

from the Miller’s theorem, this makes the input capacitance much, much greater. We
know the gain of the amp to be −gm(R2 ‖ ro), and using (5) and Fig. 8 this means
we have an input pole at:

input τ = Rs(Cgs +(1+gm(R2 ‖ ro))Cgd) (8)

For the output pole, we make the assumption Av � −1, and so Cgd appears un-
changed.

∴ ∃ An output τ = (R2 ‖ ro)(Cgd +Cdb +Cload) (9)
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Fig. 8 The equivalent Cgd as seen from the input and output; we assume the gain is much greater
than 1 for the output impedance. Note the Miller multiplied input cap, highlighted in purple.

1.3 A Need for Speed: The Dominant Pole Approximation

It is good to look back and wonder what exactly we have accomplished here. Using
the OCTC and Miller’s theorem, we will be able to approximate the locations of the
poles of a circuit. From this, we can determine which one is dominant, also known
as the lowest frequency pole. This in turn gives us a rough estimate of the bandwidth
of a circuit: we will have the full low frequency gain until we hit this 3dB point, after
which we will get the characteristic 20dB/decade loss.

Why do we often refer to a circuit’s frequency response as its “speed?” Well,
remember, for a basic RC circuit, the pole location is the inverse of what we call
its “time constant”- essentially a circuit’s speed is limited by the amount of time
we need to actually charge up the parasitic capacitors. The dominant pole therefore
gives some indication of a circuit’s speed since it represents the node that will take
the longest to charge3. Put it this way: if it weren’t for these capacitors, all the
voltages would be changing near the speed of light, and everything would be much
faster. Unfortunately, nothing is ever easy.

2 Beware the Miller Cap

We will do an example to observe the power behind the OCTC and Miller theorem-
and to show why we should always watch out for that pesky miller cap.

Let’s look at the multistage example in Fig. 9. Let’s see- 4 FETs, 4 parasitics
each- that’s 16, plus the load, or 17 capacitors total! You might be be a little worried
at this point... and you should be, but not for the reason you might expect. For hidden
in this little circuit there lies an extremely dangerous node...

3 In reality, amplifiers are rarely used in an open loop configuration, and instead used in feedback.
The effects of feedback on speed will be looked into later, but the first pole is still a good indicator
of a circuits speed capability.
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Fig. 9 An example. The
dashed grounds on M2 and
M4 are just friendly re-
minders that the gates are
AC grounded.

Well, let’s get started! Note that there are three nodes in this circuit: the input, the
output, and the middle node, which we will label as Node A. We will therefore have
to find the equivalent capacitance and resistance seen at each node, taking special
care to recognize the miller caps. It’s important to note that not all Cgd capacitors
are “miller caps”- only those in the signal path, and with a gain. For instance, Cgd2
and Cgd4 are not miller multiplied because they are not in the signal path.

Fig. 10 Figure 9, with the
middle node and the miller
caps highlighted.

Let’s find each time constant. The input pole is similar to that of (7), albeit with
increased gain due to an active load. Assume gmro� 1.

∴ τinput = Rs(Cgs1 +Cgd1(1+gm1(ro1 ‖ ro2)))

Moving on our list: To Node A! Note that Cgd3 is an input-referred Miller multiplied
cap4.

τA = (ro1 ‖ ro2)(Cgd1 +Cdb1 +Cgd2 +Cdb2 +Cgd3(1+gm3(ro3 ‖ ro4)))

4 If needed, draw the capacitors in yourself to see where they come from.
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And the grand finale:

τout put = (ro3 ‖ ro4)(CL +Cgd4 +Cdb4 +Cgd3 +Cdb3)

Now, which is the dominant pole (and what is the danger we were told to look out
for)? First things first: an important skill to learn is how to recognize and remove the
fluff. We have a ton of caps here- which ones matter more than the others? Basically
what we need to look for are the miller caps: they are the ones multiplied by the
gain of each stage- they can be way more than ten times greater than the others!
Re-writing the above time constants into a simplified form:

τinput ≈ Rs(Cgd1(1+gm1(ro1 ‖ ro2)))

τA ≈ (ro1 ‖ ro2)(Cgd3(1+gm3(ro3 ‖ ro4)))

τout put ≈ (ro3 ‖ ro4)CL

Let’s first look at the output node. It has a high output impedance, on the order of ro,
but it has no miller multiplied capacitor; unless the load is outrageously large (over
say 10-100pF), this likely will not be a problem.

What about the input node? Notice that although it contains a miller multiplied
Cgd1, its resistance is only Rs, ideally low, in the order of 50Ω. The input τ is there-
fore often the smallest.

Now look carefully at Node A. Notice that it has both a high impedance and
a miller multiplied capacitor. It will therefore produce a very low frequency pole!
This is what we must be aware of. Notice that the circuit given here provides a
fantastic low frequency gain Av ∝ (gmro)

2, but due to Node A it will have a slower
response. For instance, say ro = 100kΩ , Av3 = 40, and Cgd = 0.5pF ; this would
result in a pole at 800kHz- not exactly high speed5. Beware the miller cap on a high
impedance node!

∴ τA > τout put > τinput

3 The Cascode: Taming the Miller Cap

What if there was a way to have high gain without sacrificing speed? Well, you
guessed it- there is! Enter the Cascode.

Let’s first find the low frequency small signal gain. First step: Gm. Note M1
produces a current gmvin, which immediately becomes divided by the ro of M1 and
the input impedance of M2, on the way to the output.

Gm = gm
ro

1
gm2

+ ro
(10)

5 When you calculate the pole, don’t forget the 2pi factor to convert to Hz!
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Fig. 11 The Cascode: a com-
mon source (M1) and com-
mon gate (M2) working in
tandem.

Fig. 12 Note that if we were
to find Gm, M1 creates a cur-
rent gmvin that flows directly
to the output, if ro� 1/gm2.

And since ro� 1/gm almost always:

Gm ' gm (11)

For the output impedance, we have an interesting case: we have RL in parallel with
the drain of M2, except notice that the source of M2 is connected with the drain of
M1! Remember the full equation?

Rout,drain = ro +(1+gmro)Rs (12)

Notice now we have an “Rs,” in this case the drain of M1! Therefore Rs,2 = ro1, and

Rout,drainM2 = ro2 +(1+gm2ro2)ro1 ≈ gm2ro2ro1 (13)
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This is in parallel with RL of course.

∴ Rout = RL ‖ gm2ro2ro1 =⇒ Av = gm(RL ‖ gm2ro2ro1) (14)

Notice something interesting? The output impedance of this circuit could be po-
tentially higher than rO by a factor of gmro! Unfortunately using the resistor RL
spoils all of that, so we instead use the circuit seen in Fig 13., where we we use the
stacked active load instead. Assuming the gm and ro of each device are the same, we
can see that looking both up and down from the output we have the same resistance.
Therefore:

Av =
1
2
(gmro)

2 (15)

We have almost squared our gain, for no cost in power (we can use the same current
and supply as a common source)! Now, you may wonder what exactly is stopping

Fig. 13 The actively loaded
cascode, made for maximum
gain.

us from stacking more and more transistors to get more and more gain! Well, unfor-
tunately voltage headroom issues and speed will come into play.

Frequency response Let’s look at Fig. 14 and determine its poles. Let’s first do
the output pole, assuming RL < ro, and CL�Cgd :

τ1 = RLCL (16)

Now for the more interesting point: what about Cgd1? Notice now that the drain
of M1 is now a low impedance node, due to the source of M2. If RL� ro, then we
know that this impedance is just 1/gm2; the gain across M1 therefore is gm1/gm2.

∴ τinput = ((1+
gm1

gm2
)Cgd +Cgs)Rs (17)
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Fig. 14 Frequency Response
of the Cascode. Notice that
the miller cap Cgd1 has now
been interfaced with the low
impedance source of M2.

Notice the difference? Because of the low impedance node, we have essentially
removed the miller-effect: doubling Cgd instead of multiplying it by a factor of say
20.

Frequency Response of the Actively Loaded Cascode What about the actively
loaded cascode? Do we still mitigate the miller capacitance?

Fig. 15 Frequency Response
of the actively loaded Cas-
code. Is the source of M2 still
a low impedance node?

Let’s first find the output pole. Assuming all the gm’s and ro’s are equivalent:
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τout ≈
1
2

gmr2
oCL (18)

Notice that this can become extremely large if the load cap is large; the active cas-
code therefore should not be used as an output stage unless the designer knows the
capacitance the amplifier will be driving.

Now what we’ve been waiting for: the Miller cap. The question really is, is the
source of M2 still a low impedance node? To find the input impedance, remember
we open the output, and apply a test source. Because the output is an open, we can
no longer say our equivalent “RL” is small- remember, looking into the drain of
M3 we see approximately gm3ro3ro4. As mentioned in the last note-sheet, the full
formula for the source impedance:

Rsource =
1

gm
(1+Rd/ro) (19)

Plugging in gm3ro3ro4 for Rd and assuming all all ro’s and gm’s are equal, we see
that:

RS2 ≈ ro (20)

And so as a result we will still have the Miller effect take place, since the gain across
M1 will be 1

2 gmro.

=⇒ Cin ≈ (1+
1
2

gmro)Cgd1 +Cgs1 (21)

Not all hope is lost however. Notice first this is still the same as the common source-
but we have much much more gain! And, again the input capacitance usually is in-
terfaced with a low impedance (if not, make sure to buffer the input to make it low!).
It turns out however, that we can actually make the input capacitance lower than that
of the simple common source- remember, ultimately the parasitic capacitances de-
pend on the W and L of the transistor- we can sacrifice some gain (since we have
plenty) and make the transistors smaller!6

Why was the Source of M2 not a high impedance node when we found the
transconductance? This is a key thing to note: remember when we find the in-
put resistance, we open vout ; when we find the transconductance however we must
ground the output. This essentially removes the PMOS pair (M3-M4) from the cir-
cuit under question, and as a result, looking into the source we see only 1/gm2.

Voltage Headroom And Swing There is one downside to the cascode: as stated
before, we have now decreased our swing (Fig. 16). Notice now we have limited
the output swing between [Vdd−Vov4−Vov3,Vov1+Vov2]. This means proper biasing
must be ensured to keep the overdrives to a minimum (100mV) for maximum swing.

6 Of course there are downsides to smaller transistors besides less gain, such as an increase in
offset voltages due to greater device variability. No one said this will be easy- it’s an art-form.



Note 4: Frequency Response and the Cascode 13

Fig. 16 Swing of the Actively
Loaded Cascode

4 The Zero7

Question: Consider the common source, with only Cgd . What will happen to the
transfer function as ω approaches infinity? Answer: Eventually Cgd will short the
output to the input and the transfer function will approach one (feed-forward path).
Implication: this implies that there must be a zero in the circuit-why? Because re-
member before the gain was inverting- now it is not! Therefore the must be some
intermediate frequency where the gain was zero!8[5]

Where is this zero? It comes from the moment the feed-forward path begins to
effect the transfer function. Consider Fig. 17. The zero occurs when the current

Fig. 17 Analysis of the right hand plane zero. We consider M1 as a generic gain block as before.
Note the output is grounded for a transconductance calculation.

7 This section can be skipped, or read just for interest, and be reviewed later when covering com-
pensation. It is however a very important concept relating to feedback stability and transient re-
sponses, and is often asked about in job interviews. This of course is a rather advanced subject.
8 Note that I stated: consider only Cgd ; in reality Cgs and the substrate caps will short as well, which
pulls the transfer function towards zero. The point being made here is however still valid.
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through Cc (think Cgd) equals that coming from the transistor itself. This occurs if:

sCcVin =−gmVin (22)

=⇒ Zero at: s =
+gm

Cc
(23)

Notice that we have a right-hand plane zero, meaning it will cause the phase to
continue to decrease with increasing frequencies. This can become problematic for
stability reasons (which we will cover later).

5 What about Phase?

Yes, poles and zeros do indeed have a phase response, which turns out to be ex-
tremely important for concerns such as stability. For instance, if our amplifier has a
phase of -180°, think: what would happen if we connect it in feedback? This leads to
an important topic in circuits, known as compensation, which would take up an en-
tire notesheet on its own (and probably more). It will be covered in more advanced
notes/courses.

6 Summary

We covered a lot in this section. We found out how to use a simple method to ap-
proximate the poles in complicated circuit (to what turns out to be surprisingly good
accuracy). We discovered that the miller effect can have a profound effect, and that
the cascode offers a way to mitigate the miller effect. We also had a quick glance at
zeros in circuits. So put away your algebraic fears- you don’t have to do crazy nodal
analysis anymore!
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