
Note 1: The Small Signal Model for Transistors

Rohit J. Braganza

Abstract In this notesheet we will discover how to deal with the complexity of tran-
sistors through the creation of a linear model. In the process we will also discover
how transistors provide gain.

1 Creating a Linear Circuit Model for a Black Box

Transistors are most definitely not linear devices. However, as an analog designer
we must be able to handle the extraordinary complexity of these devices (not to
mention the circuits containing hundreds of transistors). To do so we attempt to
linearize a non-linear behavior.

1.1 The Three Terminal Tomato Model1

We begin by considering a generic three terminal black box (Fig. 1), with one ter-
minal grounded. Assume it has an output current given by some a function f of the
other two terminal voltages. Note that we make no assumption whatsoever about the
linearity of whatever is inside the box. To linearize the system, we can take a Taylor
expansion (trust me, this little bit of math will become immensely useful).

Iout(Vin +δVin,Vout +δVout)' f (Vin,Vout)+
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1 This is inspired by Prof. Kristofer Pister’s Potato Model of a Circuit
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Let’s look carefully at the derivatives in (1). The first derivative gives a change in
current due to a small change in the input voltage, with the output voltage held
constant. We define this as the transconductance, Gm.

Gm ≡
∂ Iout

∂Vin

∣∣∣∣
Vout

(2)

The other derivative in our two-variable taylor expansion relates the change in out-
put current due to a change in the output voltage, with the input held constant. This
is simply the output conductance of the box, Go, by definition!

Go ≡
∂ Iout

∂Vout

∣∣∣∣
Vin

=
1

Ro
(3)

Fig. 1 The three terminal
black box (or tomato), with
with one terminal grounded.
Note the direction of Iout.

Note that by convention instead of writing δVin and δVout we use the lower case
vin and vout instead. Remember however that vin and vout represent small signal
values, around a fixed operating point, Vin and Vout.

Assume we have an ideal voltage probe connected to the output; Note that the
constants (Iout , equal to f (Vin,Vout)) cancel on both sides of equation (1). Thus,
substituting into (1):

Gmvin +Govout = 0

=⇒ vout

vin
=−Gm

Go
=−GmRo (4)

The critical points to take away from this:

• −GmRovin is equal to vout , the small output signal voltage for any three terminal
box (with one grounded): the box can be an op-amp, a carbon nanotube, a potato,
a tomato, or Schrödinger’s cat, it does not matter. This will hold so long as the
magnitude of vin and vout are sufficiently small for the Taylor approximation to
hold.
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• Note that we do not assume f to be linear. Rather we choose an operating point,
Vin,Vout , around which we linearize. Setting this operating point is referred to as
DC biasing.

• −GmRo can therefore be thought of as the “small signal gain or transfer function,”
albeit an inverting one. This is also called the AC gain, since the small signal of
interest is often a cosine of small amplitude2.

• A small detail: Note that this derivation assumes a unilateral function, meaning
the output does not affect the input (an example of this would be feedback). This
assumption turns out to be fine except at very high frequencies. We will look at
feedback later.

1.2 The Equivalent Tomato Model Circuit

We just found out that the Taylor expansion of our box/tomato results in vout =
−GmRovin. Let us try to create an equivalent ”small signal circuit” in which we
ignore the operating point (Vin and Vout ), and concern ourselves solely with vin and
vout . We first note that Gm represents a transconductance: Gmvin therefore produces
a current, which is then multiplied by Ro to produce vout . The resulting circuit is
therefore:

Fig. 2 The equivalent small signal (Tomato) model circuit. Note carefully the direction of the
current used. Also note that so far our model does not consider any input impedance.

2 We will explore the frequency response of circuits later.
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2 Long Channel MOSFETs

We can finally tackle transistors! MOSFETs are governed by a complicated set
of non-linear functions. Even worse, as FET channel lengths become shorter and
shorter, quantum effects create nasty equations with no closed-form solutions. Luck-
ily, we have our tomato model to rely on.

2.1 Small Signal Model for Long Channel NMOS Devices

Let’s look at how MOSFETs provide gain through an example. First, we must decide
the operating point in which we will use our N-channel MOSFET. We will have the
gate be the input terminal, the drain the output terminal, and the source will be
grounded. We will set the current going through the transistor with an ideal current
source.

Fig. 3 Our setup: transistor
Q1 is biased with a gate
voltage Vg and its current is
set by the current source Id.

Let’s now look at a sample Id-Vd plot of a NMOS transistor. Remember we wish
to maximize the small signal gain.

How to find the Transconductance and Output Resistance graphically
The transconductance is: Gm ≡ ∂ Iout

∂Vin

∣∣∣
Vout
. For the above NMOS transistor config-

uration, this is the change in IDS for a smallΔVgs at some fixed VDS.

The Output resistance is: Ro ≡ ∂Vout
∂ Iout

∣∣∣
Vin
. This is one over the slope of the Id-Vd

curve.

From Fig. 4 we can see the regions of maximum GmRo occur in the saturation
operating regime. Consider the point Id = 100A, V ds = 7V. We can see a ∆Vg of
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Fig. 4 The Id-Vds graph of the STD60NF3LL Power NMOS transistor.[1]

-0.5V results in a ∆ Id of -50A, for a Gm of 10 A/V! As for the output resistance: a
∆Vd of 1V results in a ∆ Id of about 0.5A, for an output resistance of 2Ω. Our total
small signal gain therefore is about -20.3 Convince yourself that if we were to bias
ourselves in the triode region, we would get little to no transconductance or output
resistance.
To gain some intuition as to where this “gain” comes from, let’s look back at what
we did. We set Id in Fig. 3 to be 100A; we saw in Fig. 4 that when ΔVg = -0.5,
the transistor now wants to conduct 10 times as less current. However the current
source demands that the current through the MOSFET remain 100A! The transis-
tor therefore must increase its Vds (the output voltage remember) dramatically to
maintain the same current, and it must increase its Vds much, much more than the
ΔVg provided (The graph runs out of room to show where it would intersect!). This
is gain!

MOSFET Small Signal Equations

We have discovered that when biased in the saturation regime, MOSFETs provide
small-signal gain. Now we will formulate two easy equations that will allow any
analog designer to do quick, back of the envelope calculations to find the intrinsic
gain of any long channel MOSFET.

3 The reader might be a little worried for their safety at this point: 10A is enough to electrocute a
human, 100A would probably fry one to a cinder. Note though that these are power MOSFETs. In
integrated circuits, a typical MOSFET will conduct only microamps of current. A typical Gm for
an IC is around 0.1mA/V, and Ro is tens of kΩs.
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Refresher: Requirements for Saturation (Long-Channel NMOS)
We must have:

VDS >VGS−VT h

VGS >VT h

For a long channel (square law) NMOS FET in saturation, its I-V characteristic
is given by:

ID =
W
L

µnCox

2
(VGS−VT h)

2(1+λVDS)

Using definition (2) for Gm, and using the same setup used in Fig 3, with Vin at the
gate, Vout at the drain, we get:

gm ≡
∂ Iout

∂Vin

∣∣∣∣
Vout
=⇒ gm =

W
L

µnCox(VGS−VT h)(1+λVDS) (5)

Note that by convention, we use the lowercase gm to denote the transconductance
of the MOSFET itself. Uppercase Gm is used to denote the transconductance of a
circuit.
For simplicity, we drop the λVDS error term, to give:

gm =
W
L

µnCox(VGS−VT h) =
2ID

VGS−VT h
(6)

Similarly, using definition (3), we find the output resistance:

ro =
W
L

µnCox

2
(VGS−VT h)

2
λ ' 1

λ ID
(7)

We can now almost create a complete small-signal equivalent circuit for a
MOSFET- we are only missing the input resistance and parasitic capacitances. For
a MOSFET, the gate is an insulating oxide, meaning (at low frequencies) it has an
infinite input resistance. As for the parasitic capacitances, let’s observe the struc-
ture of a MOSFET, as seen in Fig. 5. In addition to the substrate capacitances, in
saturation the fringing electric fields result in parasitic capacitances given by:

Cgs =
2
3

WLCox +WC′ov (8)

Cgd =WC′ov (9)
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Fig. 5 An NMOSFET, in saturation. Note the fringing capacitances between the gate and the
source/drain regions.[2]

We can thus make our small signal model, shown in Fig 6. Note that it excludes the
substrate capacitances, we will consider them later.

Fig. 6 A simple but effective Small-Signal Model for an NMOS transistor.

3 Bipolar Junction Transistors

Bipolar junction transistors, known as BJTs, are another type of transistor widely
used in analog circuitry. We will quickly derive their equivalent circuits in the
Tomato Model.

3.1 NPN Small Signal Model

An NPN transistor biased in Forward-Active mode has the following current char-
acteristic equation, where VT is the thermal voltage (26mV at room temperature):

IC = Ise
VBE
VT [1+

VCE

VA
] (10)
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Refresher: Requirements for Forward Active Mode
The actual device-physics requirements are not particularly useful for the ana-
log designer. Instead, use these guidelines4:

IB > 0 & IC > 0
VCE >VCE,sat ' 200mV

Also remember that unlike the MOSFET, the BJT is a current controlled de-
vice, meaning an input bias current must be provided.

IB =
Ic
β

(11)

Lastly, because the BJT has an exponential collector current equation, similar
to a diode, its base-emitter voltage is essentially constant across a wide current
range.

VBE ' 700−800mV (12)

Using the definitions (2) and (3) found in the tomato model, we can find the
transconductance and output impedance respectively5.

gm =
IC
VT

(13)

ro '
VA

IC
(14)

As a current controlled deivce, the BJT now has a finite input impedance. The
small signal input impedance can be found by the partial derivative:

gin ≡
∂ IB

∂VBE

∣∣∣∣
Vout=0
= 1/rin (15)

This results in an input impedance, by convention denoted as rπ for a BJT, of:

4 The device physics standpoint says: VC > VB > VE for forward-active operation. In reality, the
collector can (and will) drop below the base and it will still work okay as long as VCE is above the
saturation voltage. It is therefore always important to look at the I-V curves of the devices you are
given to see the regions of acceptable operation.
5 Note that for the output resistance we have ignored the effect of VCE , similar to what we did for
the MOSFET.
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rπ =
β

gm
(16)

The BJT contains similar parasitic capacitances as the MOSFET, between the
Collector-Emitter junction and the Base-Emitter junction. Unlike the MOSFET, the
dimensions of a BJT are often defined by the process used, and therefore the equa-
tions for these capacitances are not terribly relevant for the designer.6,7

Our small signal model is thus:

Fig. 7 The simple yet effective Small Signal Model for a NPN BJT

3.2 BJTs versus MOSFETS

What exactly are the differences

• MOSFETs are voltage-controlled devices, whereas BJTs are currrent-controlled.
• MOSFETs can be cheaper process-wise (not always true anymore).
• MOSFET lengths and widths are designer controlled, and can be made to be

much smaller than BJTs. They can therefore be made with smaller parasitic ca-
pacitances8 .

• MOSFETs are fantastic as switches, whereas BJTs are terrible.

6 General trends are more important to remember: namely that if you are given the choice, larger
BJTs will have larger capacitances.
7 I will label these capacitances by Cce, Cbe, etc. Note though that sometimes they are referred to
by other various Greek terms that are not worth memorizing.
8 This implies that MOSFETs can be faster... wait a bit to learn more!9

9 There are actually special hetero-bi junction (HBT)-usually SiGe- BJTs that have transit frequen-
cies of around 100 GHz, but these are fancy processes.
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• BJTs provide superior intrinsic gain for the same power consumption, compared
to a MOSFET. This is due to their higher transconductance and large Early volt-
ages.

Do not worry if the differences do not make complete sense yet; it will all come
together later as we continue to explore circuit design!

4 Summary

So far, the reader should understand how we have derived small signal circuits and
their resulting gain for any type of device. In particular, we looked at MOSFETs
and BJTs. In the next notesheet, we will begin to see how we can use these models
in actual circuits!
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