EE 140/240A Linear Integrated Circuits

1. Model Mania

(a) For a quadratic model MOSFET, sketch the following curves. No units needed, but try to get the shape right with any significant points labeled, and label with something like "goes as sqrt(X)" or "linear in X ". Assume $\lambda=0$.
Solution: We'll start with

$$
I_{D}=\frac{1}{2} \mu C_{o x}\left(V_{G S}-V_{t}\right)
$$

i. g_{m} vs. $V_{G S}$ with constant W / L

Solution:

Rubric: (3 Points) - +1: Identifying equation - +2: Reasonable sketch ii. g_{m} vs. $V_{G S}$ with constant I_{D} Solution:	
	$g_{m}=\frac{2 I_{D}}{V_{G S}-V_{t}}$

Rubric: (3 Points)

- +1 : Identifying equation
- +2: Reasonable sketch
iii. g_{m} vs. I_{D} with constant W / L

Solution:

Rubric: (3 Points)

- +1 : Identifying equation
- +2: Reasonable sketch
iv. g_{m} vs. I_{D} with constant $V_{G S}$

Solution:

$$
g_{m}=\frac{2 I_{D}}{V_{G S}-V_{t}}
$$

Rubric: (3 Points)

- +1 : Identifying equation
- +2: Reasonable sketch
v. g_{m} vs. W / L with constant I_{D} Solution:
(

Rubric: (3 Points)

- +1: Identifying equation
- +2: Reasonable sketch
vi. g_{m} vs. W / L with constant $V_{G S}$

Solution:

$$
g_{m}=\mu C_{o x} \frac{W}{L}\left(V_{G S}-V_{t}\right)
$$

Linear in W / L
Rubric: (3 Points)

- +1: Identifying equation
- +2: Reasonable sketch
(b) (EE240A) Repeat questions (a)i., (a)ii., (a)iv., and (a)vi. for subthreshold. You do not need to sketch the plot. You may assume I_{S} is a constant in all but $\frac{W}{L}$. Do not assume n is necessarily a constant.
Solution: The equation we'll start with is

$$
I_{D}=I_{S} e^{\frac{V_{G S}}{n} \cdot \frac{q}{k_{B} T}}
$$

where $\frac{W}{L}$ is contained within I_{S} (linear relationship). Finding g_{m} :

$$
\begin{aligned}
g_{m} & =\frac{\partial i_{d}}{\partial v_{g s}} \\
& =I_{S} e^{\frac{V_{G S}}{n} \cdot \frac{q}{k_{B} T}} \frac{q}{n k_{B} T} \\
& =I_{D} \cdot \frac{q}{n k_{B} T} \\
& =I_{D} \cdot \frac{\ln \left(\frac{I_{D}}{I_{S}}\right)}{V_{G S}}
\end{aligned}
$$

i. g_{m} vs. $V_{G S}$ with constant W / L

$$
g_{m}=I_{S} e^{\frac{V_{G S}}{n} \cdot \frac{q}{k_{B} T}} \frac{q}{n k_{B} T}
$$

Exponentially increasing in $V_{G S}$

Rubric: (3 Points)

- +1 : Identifying equation
- +2: Correct relationship
ii. g_{m} vs. $V_{G S}$ with constant I_{D}

$$
g_{m}=I_{D} \cdot \frac{\ln \left(\frac{I_{D}}{I_{S}}\right)}{V_{G S}}
$$

Inversely proportional to $V_{G S}$. Note that we want this form for g_{m} because none of the other elements depend on $V_{G S}$.

Rubric: (3 Points)

- +1: Identifying equation
- +2: Correct relationship
iii. g_{m} vs. I_{D} with constant $V_{G S}$

$$
g_{m}=I_{D} \cdot \frac{\ln \left(\frac{I_{D}}{I_{S}}\right)}{V_{G S}}
$$

This is not a clean relationship.
Rubric: (3 Points)

- +1: Identifying equation
- +2: Correct relationship
iv. g_{m} vs. W / L with constant $V_{G S}$

$$
g_{m}=I_{S} e^{\frac{V_{G S}}{n} \cdot \frac{q}{k_{B} T}} \frac{q}{n k_{B} T}
$$

Roughly linear in W / L, since it's contained within I_{S}
Rubric: (3 Points)

- +1: Identifying equation
- +2: Correct relationship
(c) (EE240A) Repeat part (a), but for the linear region of operation. You do not need to plot for this subpart.
Solution:

$$
\begin{aligned}
g_{m} & =\frac{d i_{d}}{d v_{g s}} \\
& =\mu C_{o x} \frac{W}{L} \\
& =\frac{I_{D}}{V_{G S}-V_{t}-\frac{1}{2} V_{D S}}
\end{aligned}
$$

i. g_{m} vs. $V_{G S}$ with constant W / L

$$
g_{m}=\mu C_{o x} \frac{W}{L}
$$

Constant! How fascinating; this means if for some reason you're in the linear region of operation, changing $V_{G S}$ isn't going to significantly help your g_{m}.

Rubric: (3 Points)

- +1: Identifying equation
- +2: Correct relationship
ii. g_{m} vs. $V_{G S}$ with constant I_{D}

$$
g_{m}=\frac{I_{D}}{V_{G S}-V_{t}-\frac{1}{2} V_{D S}}
$$

Approximately inversely proportional.
Rubric: (3 Points)

- +1: Identifying equation
- +2: Correct relationship
iii. g_{m} vs. I_{D} with constant W / L

$$
g_{m}=\mu C_{o x} \frac{W}{L}
$$

Constant. The takeaway here is that if you want g_{m} and you're in the linear region of operation, your devices will likely have to get larger.

Rubric: (3 Points)

- +1: Identifying equation
- +2: Correct relationship
iv. g_{m} vs. I_{D} with constant $V_{G S}$

$$
g_{m}=\frac{I_{D}}{V_{G S}-V_{t}-\frac{1}{2} V_{D S}}
$$

Roughly linear
Rubric: (3 Points)

- +1 : Identifying equation
- +2: Correct relationship
v. g_{m} vs. W / L with constant I_{D}

$$
g_{m}=\mu C_{o x} \frac{W}{L}
$$

Linear
Rubric: (3 Points)

- +1: Identifying equation
- +2: Correct relationship
vi. g_{m} vs. W / L with constant $V_{G S}$

$$
g_{m}=\mu C_{o x} \frac{W}{L}
$$

Linear again!
Rubric: (3 Points)

- +1 : Identifying equation
- +2: Correct relationship

2. Resistive Load CS Amp Biasing

A common source FET amplifier has a resistive load and $\lambda=\frac{1}{50 \mathrm{~V}}$. The output is biased at 5 V , the transistor is in saturation, and the resistive load has the same impedance as the output resistance of the transistor. What is the supply voltage?

Solution:

Given $R_{L}=r_{o}$:

$$
\begin{aligned}
V_{D D} & =V_{\text {OUT }}+I_{D} R_{L} \\
& =V_{\text {OUT }}+I_{D} r_{o} \\
& =V_{\text {OUT }}+I_{D} \frac{1}{\lambda I_{D}} \\
& =V_{\text {OUT }}+\frac{1}{\lambda} \\
& =5 \mathrm{~V}+50 \mathrm{~V} \\
& =55 \mathrm{~V}
\end{aligned}
$$

$$
V_{D D}=55 \mathrm{~V}
$$

Rubric: (5 Points)

- +1 : Correct choice of circuit topology
- +2: $V_{D D}$ Equation
- +2: Correct value of $V_{D D}$

3. Single-Pole Amplifier

A single-pole amplifier has a low frequency gain of 1000 , and a gain of 2 at 500 MHz . What are the pole frequency and unity gain frequency in Hz ? What is the gain at 10 MHz ?
Solution: It helps to draw this one out:

Given that this is a single-pole amplifier and the gain at $500 \mathrm{MHz}=2$, we know the unity gain frequency is roughly a third of a decade higher than 500 MHz , i.e. a factor of 2 , so

$$
f_{u}=2 \times 500 \mathrm{MHz}=1.0 \mathrm{GHz}
$$

Since gain \times bandwidth is a constant for the single-pole system,

$$
\begin{aligned}
f_{u} & =A_{\nu 0} \times f_{p} \\
f_{p} & =\frac{f_{u}}{A_{\nu 0}} \\
& =\frac{1 \mathrm{GHz}}{1000} \\
& =1 \mathrm{MHz}
\end{aligned}
$$

And now we want the gain at 10 MHz , i.e. one decade above the pole frequency

$$
A_{V}(10 \mathrm{MHz})=\frac{1000}{10}=100 \mathrm{~V} / \mathrm{V}
$$

$$
\begin{gathered}
f_{u}=1.0 \mathrm{GHz} \\
f_{p}=1 \mathrm{MHz} \\
A_{V}(10 \mathrm{MHz})=100 \mathrm{~V} / \mathrm{V}
\end{gathered}
$$

Rubric: (5 Points)

- +1: Correct unity gain frequency equation
- +1: Correct unity gain frequency with correct units
- +1 : Correct pole frequency with correct units
- +2: Correct gain with correct units

4. Settling Time

Write down a table of settling error vs. time for $\frac{t}{\tau}=\{1,3,5,7\}$. Use a calculator for this one. Memorize the table to one significant digit.

Solution:

t / τ	$v(t)=v_{0}\left(1-e^{-t / \tau}\right)$	$\%$ Error
1	0.632	36.8%
3	0.950	5.0%
5	0.993	0.7%
7	0.9991	0.09%

Rubric: (4 Points)

- +1 : Correct error value $(\times 4)$

5. RC Low-Pass Filter Transient

An RC low pass filter with a time constant of $1 \mu \mathrm{~s}$ is driven with a $0-1 \mathrm{~V}$ square wave. Sketch the first full cycle of the input and output when the square wave is first turned on, and the frequency of the square wave is
(a) 1 kHz

Solution:

Rubric: (3 Points)

- +3: Correct waveform
(b) 1 MHz

Solution:

Rubric: (5 Points)

- +2: Correct waveform
- +3 : Correct values of magnitude
(c) 1 GHz

Solution:

Rubric: (2 Points)

- +2 : Correct waveform. The plot doesn't have to be to scale.

6. Relationships for Your Cheat Sheet

Fill in the following table for a single-transistor common-source amplifier:

$A_{v 0}$ $(\mathrm{~V} / \mathrm{V})$	ω_{p} $(\mathrm{rad} / \mathrm{s})$	ω_{u} $(\mathrm{rad} / \mathrm{s})$	g_{m} $(1 / \Omega)$	r_{o} (Ω)	C_{L} $(\mathrm{~F})$
1000	1 M				1 p
	1 M	0.1 G		100 k	
		10 G		1 M	20 f
	10	10 M			10 p

Solution: The often-used equations of interest (that are useful for your cheat sheet):

$$
\begin{aligned}
A_{v 0} & =\left|g_{m} r_{o}\right| \\
\omega_{p} & =\frac{1}{r_{o} C_{L}} \\
\omega_{u} & =A_{v 0} \omega_{p}=\frac{g_{m}}{C_{L}}
\end{aligned}
$$

$A_{v 0}$ $(\mathrm{~V} / \mathrm{V})$	ω_{p} $(\mathrm{rad} / \mathrm{s})$	ω_{u} $(\mathrm{rad} / \mathrm{s})$	g_{m} $(1 / \Omega)$	r_{o} (Ω)	C_{L} $(\mathrm{~F})$
1000	1 M	$\mathbf{1 G}$	$\mathbf{1 m}$	$\mathbf{1 M}$	1 p
$\mathbf{1 0 0}$	1 M	0.1 G	$\mathbf{1 m}$	100 k	$\mathbf{1 0 p}$
$\mathbf{2 0 0}$	$\mathbf{5 0 M}$	10 G	$\mathbf{0 . 2 m}$	1 M	20 f
$\mathbf{1 M}$	10	10 M	$\mathbf{0 . 1 m}$	$\mathbf{1 0 G}$	10 p

Rubric: (12 Points)

- +1 : Each correct value $(\times 12)$

