This homework is due October 18, 2019 (late October 19, 2019 09:00).

Submission Format

Your homework submission should consist of one file.

- hw6.pdf: A single PDF file that contains all of your answers (any handwritten answers should be scanned).

1. K2-W

Check out the datasheet for the K2-W tube op-amp: http: / /philbrickarchive.org/k2-w_operational_ amplifier_later.htm. This op-amp, released in 1952, was the first production op-amp. It runs from a $\pm 300 \mathrm{~V}$ supply, and has a bandwidth of 300 kHz (or k-cycles/s, as they said back then-the unit Hertz not having been established yet). There's a schematic on page 2 . Pins 1,2 , and 6 on the bottom of the figure are V_{+}, V_{-}, and $V_{\text {out }} . V_{R 1}$ and $V_{R 2}$ are neon bulbs that provide a low impedance level shift of roughly 100 V to center the output between the rails. Identify (circle and label):
(a) input differential pair
(b) diff-pair load resistor
(c) tail current resistor
(d) Estimate the common mode gain and write it near the tail resistor
(e) Common-cathode gain stage (like CS or CE)
(f) Cathode-follower output stage (like source-follower or emitter follower, CD, CC)
(g) Miller-multiplied compensation capacitor from the output back to the input of the gain stage
(h) (BONUS) positive feedback in this amplifier, designed to increase the low frequency gain (which ended up at about 20,000)

Solution:

You can find more info on the K2-W here: https://www.electronicdesign.com/analog/ whats-all-k2-w-stuff-anyhow

Rubric: (8 Points)

- +1 : For each correct marking (with no extra devices)

2. More Single-Pole Amplifiers

You have an opamp with a low-frequency gain of 1000 and a single pole at $1 \mathrm{Mrad} / \mathrm{s}$. Plot the location of the pole as a function of the feedback factor f from $f=[0,1]$.

Solution:

Rubric: (3 Points)

- +1 : Pole location with $f=0$
- +1 : Pole location with $f=1$
- +1: Trajectory of pole location correct
(a) From now on, assume $\mathbf{f}=\mathbf{0 . 1}$. Sketch the Bode plot of the closed-loop amplifier.

Solution:

Rubric: (2 Points)

- +1: Correct 3dB frequency
- +1: Correct closed-loop gain
(b) What is the fractional gain error?

Solution: Following the equation for fractional gain error:

$$
-\frac{1}{A f}
$$

$$
-1 \cdot 10^{-2}
$$

Rubric: (2 Points)

- +1: Correct equation
- +1 : Correct numerical answer
(c) What is the time constant of the step response? How does it compare to the open-loop time constant? Solution:

$$
\tau_{\mathrm{OL}}=\frac{1}{\omega_{p, \mathrm{OL}}}
$$

$$
\tau_{\mathrm{CL}}=\frac{1}{\omega_{p, \mathrm{OL}} A_{0} f}
$$

$$
\begin{gathered}
\tau_{\mathrm{OL}}=1 \mu \mathrm{~s} \\
\tau_{\mathrm{CL}}=1 \cdot 10^{-2} \mu \mathrm{~s}
\end{gathered}
$$

The closed loop time constant is faster than the open-loop time constant by a factor of the loop gain $A_{0} f$

Rubric: (2 Points)

- +1 : Correct closed-loop time constant
- +1 : Correct comparison to open-loop time constant
(d) What is the unity gain frequency? How does it compare to the open-loop unity gain frequency?

Solution:

The unity gain frequency stays constant

$$
\omega_{u}=1000.0 \frac{\mathrm{Mrad}}{\mathrm{~s}}
$$

Rubric: (2 Points)

- +1 : Correct ω_{u}
- +1 : Correct comparison between closed-loop and open-loop unity gain frequency

3. Now With Three Poles!

You have an opamp with a low-frequency gain of 1000 and three poles at $1 \mathrm{Mrad} / \mathrm{s}$.
(a) Plot the location of the three poles as a function of the feedback factor f.

Solution: First, define ω_{p} as the open loop pole frequency.

The open-loop transfer function:

$$
A_{\mathrm{OL}}(s)=\frac{A_{0} \omega_{p}^{3}}{\left(s+\omega_{p}\right)^{3}}
$$

And plug this into the closed loop transfer function equation:

$$
A_{\mathrm{CL}}(s)=\frac{A_{\mathrm{OL}}(s)}{1+A_{\mathrm{OL}}(s) f}=\frac{A_{0} \omega_{p}^{3}}{\left(s+\omega_{p}\right)^{3}+A_{0} f \omega_{p}^{3}}
$$

The poles of the characteristic equation can be found by setting the denominator to 0 :

$$
\begin{aligned}
\left(s+\omega_{p}\right)^{3}+A_{0} f \omega_{p}^{3} & =0 \\
s+\omega_{p} & =\sqrt[3]{A_{0} f} \omega_{p} \cdot \exp \left(j \phi_{i}\right), \phi_{i}=180 \pm 60^{\circ} \\
s & =-\omega_{p}\left(1+\sqrt[3]{A_{0} f} e^{ \pm j \frac{\pi}{3}}\right)
\end{aligned}
$$

where the portion of the expression above with the complex exponential gives the angle and magnitude of the vector which progresses from the initial pole location.

Rubric: (9 Points)

- +1 : Calculated correct pole location in terms of $f(\times 3)$
- +1 : Correct starting point when $f=0(\times 3)$
- +1 : Correct angle of trajectory for each pole as f changes $(\times 3)$
(b) At the point where the poles cross the $j \omega$ axis, annotate the plot with the value of f that gives this pole location.

Solution:

Using our answer to the previous part and with some triangle geometry, at the $j \omega$ axis, the real part is 0 , so

$$
\begin{aligned}
2 \omega_{p} & =\sqrt[3]{A_{0} f} \omega_{p} \\
f & =\frac{8}{A_{0}} \\
& =0.008
\end{aligned}
$$

See the plot above for the annotation.

Rubric: (2 Points)

- +1 : Set real portion to 0 in expression for poles in previous part (don't double-penalize yourselfeven if your expression for the pole location earlier was incorrect, you should still give yourself credit if you went through the correct process here)
- +1 : Correctly calculated f given the expression from the previous part
(c) Using this value for f, draw a Bode plot of the loop gain $A f$

Solution:

$$
A_{\mathrm{OL}} f=\frac{8}{\left(1+\frac{s}{\omega_{p}}\right)^{3}}
$$

$$
\omega(\mathrm{rad} / \mathrm{s})
$$

Rubric: (3 Points)

- +1 : Correct DC Af
- +1 : Correct pole location and $-60 \mathrm{~dB} /$ decade slope
- +1: ω_{u} of $A f<10^{7} \frac{\mathrm{rad}}{\mathrm{s}}$

4. Virtual Ground Doesn't Fly

Estimate the output resistance of a CMOS differential amplifier with current mirror load.

You may assume that $g_{m} r_{o} \gg 1$ for all combinations of g_{m} and r_{o}. The following steps may help:
(a) Estimate the impedance seen looking into the source of M1A

Solution:

$$
\begin{aligned}
R_{a} & =\frac{\frac{1}{g_{m 2 a}}+r_{o}}{1+g_{m 1 a} r_{o}} \\
& \approx \frac{r_{o}}{g_{m 1 a} r_{o}}
\end{aligned}
$$

$$
R_{a} \approx \frac{1}{g_{m 1 a}}
$$

Rubric: (1 Points)

- +1: Correct impedance estimate
(b) Estimate the impedance seen looking down from the source of M1B Solution:

$$
\begin{aligned}
R_{b} & =\frac{1}{g_{m 1 a}} \| r_{o 3} \\
& \approx \frac{1}{g_{m 1 a}}
\end{aligned}
$$

$$
R_{b} \approx \frac{1}{g_{m 1 a}}
$$

Rubric: (1 Points)

- +1: Correct impedance estimate
(c) Estimate the impedance seen looking into the drain of M1B

Solution:

$$
\begin{aligned}
R_{c} & =R_{b}+r_{o}\left(1+g_{m} R_{b}\right) \\
& \approx r_{o}\left(1+g_{m} R_{b}\right) \\
& \approx 2 r_{o}
\end{aligned}
$$

$$
R_{c} \approx 2 r_{o}
$$

Rubric: (1 Points)

- +1 : Correct impedance estimate
(d) For the R_{o} calculation, estimate $i_{d 1 B}$ as a function of v_{o}.

Solution:

$$
\begin{aligned}
i_{d 1 B} & =\frac{v_{o}}{R_{\mathrm{out}}} \\
& =\frac{v_{o}}{2 r_{o 1 B}}
\end{aligned}
$$

$$
i_{d 1 B}=\frac{v_{o}}{2 r_{o 1 B}}
$$

Rubric: (1 Points)

- +1: Correct relationship between $i_{d 1 B}$ and v_{o}
(e) The current $i_{d 2 B}$ is due to both the output resistance and the mirrored current. Estimate both parts.

Solution:

$$
\begin{aligned}
i_{d 2 B} & =(\text { mirrored current })+(\text { current due to output resistance }) \\
& \approx i_{d 1 B}+\frac{v_{o}}{r_{o 2 B}} \\
& =\frac{3 v_{o}}{2 r_{o}}
\end{aligned}
$$

$$
i_{d 2 B}=\frac{3 v_{o}}{2 r_{o}}, r_{o}=r_{o 1 B}=r_{o 2 B}
$$

Rubric: (2 Points)

- +1 : Correct mirrored current
- +1 : Correct current due to output resistance
(f) Estimate the total output current $i_{o}=i_{d 1 B}+i_{d 2 B}$.

Solution:

$$
\begin{aligned}
i_{o} & =i_{d 1 B}+i_{d 2 B} \\
& \approx \frac{v_{o}}{2 r_{o 1 B}}+\frac{v_{o}}{2 r_{o 1 B}}+\frac{v_{o}}{r_{o 2 B}} \\
& =v_{o}\left(\frac{1}{r_{o 1 B}+r_{o 2 B}}\right)
\end{aligned}
$$

$$
i_{o} \approx v_{o}\left(\frac{1}{r_{o 1 B}+r_{o 2 B}}\right)
$$

Rubric: (1 Points)

- +1: Correct total output current given previous answers (don't double-penalize)
(g) Show that $R_{o} \approx r_{o 1 B} \| r_{o 2 B}$. Magic!

Solution:

$$
\begin{aligned}
R_{o} & =\frac{v_{o}}{i_{o}} \\
& \approx \frac{1}{\left(\frac{1}{r_{o l B}}+\frac{1}{r_{o 2 B}}\right)} \\
& =r_{o 1 B} \| r_{o 2 B}
\end{aligned}
$$

$$
R_{o} \approx r_{o 1 B} \| r_{o 2 B}
$$

Rubric: (1 Points)

- +1: Correct final calculation

5. (EE240A) More Poles

A single-stage op-amp has a low frequency gain of 200 and a dominant pole at $10 \mathrm{Mrad} / \mathrm{s}$.
(a) Draw the s-plane with the real axis from -10^{7} to 0 , and the imaginary axis from 0 to 10^{7}. Mark the pole location and draw a dot at $10^{7} j$.
Solution: See the solution for part (c)
Rubric: (2 Points)

- +1: Correct imaginary and real axes
- +1 : Correct pole location
(b) Draw the vector from the pole to $10^{7} j$. Calculate the magnitude and phase of this vector. Solution:

$$
\begin{aligned}
\text { magnitude }=\sqrt{2} \cdot 10^{7} \quad \text { phase } & =-\arctan \left(\frac{10^{7}}{-10^{7}}\right) \\
& =45^{\circ}
\end{aligned}
$$

See the solution for part (c) for the plot.

$$
\begin{aligned}
\text { magnitude } & =\sqrt{2} \cdot 10^{7} \\
\text { phase } & =45^{\circ}
\end{aligned}
$$

Rubric: (3 Points)

- +1: Drew vector
- +1: Correct magnitude
- +1 : Correct phase
(c) Draw a dot at $10^{6} j$. Draw the vector from the pole to $10^{6} j$. Calculate the magnitude and phase of this vector.

Solution:

$$
\begin{array}{rlrl}
\text { magnitude } & =\sqrt{\left(10^{7}\right)^{2}+\left(10^{6}\right)^{2}} & \text { phase } & =-\arctan \left(\frac{10^{6}}{10^{7}}\right) \\
& \approx 10^{7} & & \approx 0.1 \mathrm{rad} \longleftarrow \text { small angle approximation } \\
& \approx 5.73^{\circ}
\end{array}
$$

Rubric: (3 Points)

- +1 : Drew vector and dot
- +1 : Correct magnitude
- +1 : Correct phase
(d) Repeat parts (a) and (b), but with the imaginary axis from 0 to 10^{8} and the dot at $10^{8} j$. Keep the pole in the same location.

Solution:

$$
\begin{aligned}
\text { magnitude } & =\sqrt{\left(10^{7}\right)^{2}+\left(10^{8}\right)^{2}} \\
& \approx 10^{8}
\end{aligned}
$$

$$
\begin{aligned}
\text { phase } & =-\arctan \left(\frac{10^{8}}{10^{7}}\right) \\
& \approx 1.47 \mathrm{rad} \\
& \approx 84.3^{\circ}
\end{aligned}
$$

Rubric: (3 Points)

- +1 : Drew vector
- +1 : Correct magnitude
- +1 : Correct phase
(e) Draw a Bode plot of the gain of your amplifier, with frequency running from 10^{5} to $10^{9} \mathrm{rad} / \mathrm{s}$. Use the straight-line approximations for the Bode plot, and then add dots showing the results of parts (b), (c), and (d).

Solution:

Rubric: (4 Points)

- +1 : Correct DC magnitude
- +1 : Correct pole frequency
- +1 : Correct magnitude slope
- +1 : Correct phase start and end values

6. Compensating for Something

A two-stage CMOS op-amp running at a particular bias point has the following parameters:

- $G_{m 1}=1 \mathrm{mS}$
- $G_{m 2}=1 \mathrm{mS}$
- $R_{o 1}=1 \mathrm{M} \Omega$
- $C_{1}=0.1 \mathrm{pF}$
- $R_{o 2}=100 \mathrm{k} \Omega$
- $C_{C}=0 \mathrm{pF}$
- $C_{2}=10 \mathrm{pF}$
(a) Plot the magnitude and phase of the overall gain of this uncompensated amplifier.

Solution:

$$
\begin{aligned}
\omega_{p 1} & =\frac{1}{R_{o 1} C_{1}} \\
& =10^{7} \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
\omega_{p 2} & =\frac{1}{R_{o 2} C_{2}} \\
& =10^{6} \frac{\mathrm{rad}}{\mathrm{~s}}
\end{aligned}
$$

$$
\begin{aligned}
A_{\nu 0} & =G_{m 1} R_{o 1} G_{m 2} R_{o 1} \\
& =10^{5} \frac{\mathrm{~V}}{\mathrm{~V}}
\end{aligned}
$$

Rubric: (6 Points)

- +1 : Correct pole frequency $(2 \times)$
- +1: Correct DC gain
- +1: Correct phase relationship about pole frequencies ($2 \times$)
- +1 : Correct unity gain frequency
(b) Where are the poles of the uncompensated amplifier? Is it unity-gain stable?

Solution: See the plot in part (a)

$$
\omega_{p, 1}=10^{7} \frac{\mathrm{rad}}{\mathrm{~s}}, \omega_{p, 2}=10^{6} \frac{\mathrm{rad}}{\mathrm{~s}}
$$

No, the amplifier is not unity gain stable.

Rubric: (1 Points)

- +1: Correct answer of if the amplifier is unity gain stable

7. Continuing... For the same amplifier above, we now add $\mathbf{C}_{\mathbf{C}}=\mathbf{1 p F}$. You may ignore the RHP zero that this introduces. On the figures provided below,
(a) Plot the magnitude of the second stage gain vs. frequency.

Rubric: (3 Points)

- +1: Correct DC gain
- +1: Correct pole frequency
- +1: 20dB/decade drop-off
(b) Plot the magnitude of the input capacitance of the second stage (including Cc) vs. frequency.

Rubric: (4 Points)

- +1 : Correct DC capacitance (if you didn't include C_{1} that's fine)
- +1: Correct high-frequency capacitance (fine if you didn't include C_{1})
- +1: Correct pole location for gain dropping the capacitance
- +1: Correct $\omega_{u 2}$ location where C_{C} no longer Millerizes
(c) Plot the magnitude of the input impedance of the second stage vs. frequency. Add a line for the output impedance of the first stage.
Rubric: (4 Points)
- +1: Correct low frequency $R_{o 1}$
- +1: Correct impedance line for Millerized C_{C}
- +1: Correct zero location in the impedance when Miller effect begins to decrease
- +1: Correct impedance line for non-Millerized C_{C}
(d) Now plot the magnitude of the gain of the first stage on the top plot, and the magnitude of the overall gain of the amplifier.
Rubric: (9 Points)
- +1: Correct DC gain of first stage
- +1: Correct pole and zero locations of the first stage gain ($3 \times$)
- +1: Correct DC gain of combined stages
- +1: Correct pole locations and slope of combined stages ($4 \times$)
Second stage gain $-\left|A_{\vee 2,0}\right|$, and first stage and overall gains

magnitude of second stage input (Miller) capacitance

$\left|\mathrm{A}_{\mathrm{v} 2}\right|$

Solution:

(e) What are the compensated poles of the amplifier? If C_{c} were 0 pF , where would the poles of the amplifier be?

Solution:

	$\omega_{p 1}$ $(\mathrm{rad} / \mathrm{s})$	$\omega_{p 2}$ $(\mathrm{rad} / \mathrm{s})$
Uncompensated	10^{7}	10^{6}
Compensated	10^{4}	10^{8}

Rubric: (4 Points)

- +1 : Correct compensated poles of the amplifier $(2 \times)$
- +1 : Correct uncompensated poles of the amplifier $(2 \times)$

8. Virtual Ground Is A Lie

(EE240A) For a standard 5 transistor CMOS differential amplifier show that the gain from a differential input to the (so called virtual ground!) tail voltage is $\frac{1}{4}$. You can assume that $g_{m} r_{o} \gg 1$ for all combinations of g_{m} and r_{o}. You can win bets with experienced IC designers with this knowledge!

Solution:

Estimating G_{m} :

$$
\begin{aligned}
v_{m i r r} & \approx-\frac{v_{i}}{2} \\
v_{d} & \approx g_{m} v_{i}\left(\frac{r_{o}}{2}\right) \\
i_{o} & \approx-\frac{v_{x}}{r_{o}}-\frac{v_{d}}{r_{o}} \\
& \approx \frac{v_{i}}{2 r_{o}}-\frac{g_{m}}{2} v_{i} \\
G_{m} & \approx-\frac{g_{m}}{2}
\end{aligned}
$$

Estimating R_{o}

$$
\begin{aligned}
R_{o} & \approx r_{o}\left\|\frac{r_{o}+\frac{1}{g_{m}}}{1+g_{m} r_{o}}\right\| \frac{r_{o}+r_{o}}{1+g_{m} r_{o}} \\
& \approx r_{o}\left\|\frac{1}{g_{m}}\right\| \frac{2}{g_{m}} \\
& \approx \frac{2}{3 g_{m}} \\
& \approx \frac{1}{2 g_{m}} \text { if you ignore the additional } r_{o} \text { on the non-diode connected branch }
\end{aligned}
$$

Rubric: (4 Points)

- +1 : Correct G_{m} estimate with correct sign
- +1 : Correct R_{o} estimate (using $\frac{2}{3 g_{m}}$ is acceptable)
- +2 : Correct gain with correct sign

