Homework Assignment \#9

Due by online submission Wednesday 11/13/2019

1. Given the choice of NMOS or PMOS input stage, and the five different op-amp topologies that we've talked about (single-stage 5T diff pair with mirror load, single-stage current mirror, two-stage, telescopic cascoe, folded cascode), which combinations are appropriate for the following applications? Assume that the magnitude of the N and P threshold voltages is roughly $+/-0.6 \mathrm{~V}$, and that all overdrive voltages are at least 0.1 V .
a. bandgap reference as in Figure 4.46 c driving a $100 \mathrm{k} \Omega$ load
b. digital voltage regulator with an output of 1 V and a supply of between 1.6 and 3.2 V
c. analog voltage regulator with an output of 1.25 V and a supply of between 1.6 and 3.2 V
d. ADC comparator with an input at 1.25 V and a supply at 1.25 V
e. variable gain amplifier with an input at 0 V and a supply at 1.25 V
2. Design a telescopic cascode op-amp with a 2 V supply, 200 uA tail current and overdrive voltages of roughly 100 mV . Assume the simplest biasing as discussed in class (3 stacked current mirrors). Use the results of your Lab 4 device characterization, and low Vt devices with 1 um channel lengths.
a. Draw a schematic, showing device sizes and currents, and node bias points.
b. Make a table with device gm and ro
c. estimate the output impedance, transconductance, and gain of the op-amp
d. plot the output swing vs. common mode input range (box plot from previous homework)
e. could you have made this topology with regular Vt devices?
3. Repeat the previous problem but with a high-swing current mirror and input-tracking NMOS cascode biasing. Compare the gains. Why are they different?
4. Repeat the previous problem, but with regular Vt devices.
5. For the PMOS-input folded cascode op-amp below, assume the quadratic model with the following process specs $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=100 \mu \mathrm{~A} / \mathrm{V}^{2}, \lambda=1 /(10 \mathrm{~V}),-\mathrm{V}_{\mathrm{tp}}=\mathrm{V}_{\mathrm{tn}}=0.3 \mathrm{~V}, \mathrm{C}_{\mathrm{ox}}=5 \mathrm{fF} / \mathrm{um}^{2}$, $\mathrm{C}^{\prime}{ }_{\mathrm{ol}}=0.5 \mathrm{fF} / \mathrm{um}$.

a. Calculate and tabulate:
i. the overdrive voltage and current in all devices. For this step you may assume that $\lambda=0$. The simplest order may be Mb1 through Mb6, then M1 through M5.
ii. Calculate the bias voltages on all nodes, assuming $\mathrm{V}_{\mathrm{I}, \mathrm{CM}}=1 \mathrm{~V}$. Specifically: tail, $\mathrm{G} 2, \mathrm{G} 3$, G5, G6, S3B, S4AB, and out.
iii. the g_{m} and r_{o} parameters for M1 through M5
b. Calculate Gm, Ro, and Av
c. Calculate the input common mode range and output swing.
d. What is the minimum voltage that could be used on the gates of M3AB to still keep M2AB in saturation? If you used that voltage, what is the new input common mode range and output swing? How would you change the size of $\mathrm{Mb5}$ to achieve that voltage?
e. If the load capacitance is 1 pF (roughly the same as the input capacitance),
i. what are the pole and unity gain frequencies?
ii. What is the phase margin in unity gain?
iii. What are the frequencies of the pole/zero doublets from the current mirror?
6. To increase the positive output swing of the previous amplifier,
a. redraw the PMOS current mirror M4AB, M5AB as a high-swing cascode current mirror, as in Figure 5.18 b in Razavi (5.13 b in the $1^{\text {st }}$ edition), but PMOS.
b. Generate $\mathrm{V}_{\mathrm{b}}\left(\mathrm{V}_{\mathrm{G} 4}\right)$ using something like $\mathrm{Mb5}$ above, but PMOS. What current source do you use? What gate voltage biases it? What W/L do you use for all devices, and why?
c. [240A] generate V_{b} from the circuit suggested in 5.19 b in Razavi. What value for $(\mathrm{W} / \mathrm{L})_{5}$ in that figure is needed?
7. In Figure 2 of this Analog Devices discussion on voltage regulators
http://www.analog.com/en/design-center/landing-pages/001/fundamentals-of-ldo-design-and-applications.html
a. Estimate the low-frequency loop gain $\mathrm{T}=$ in terms of the op-amp voltage gain $\mathrm{A}_{0}, \mathrm{gm}$ of the pass transistor, and load resistance R_{L} (not shown in the figure).
b. Why does the SENSE value connect to the positive input of the op-amp? Is this positive feedback?
8. For the circuit in figure 13.43 in Razavi (6.9 in GHLM)
a. what ratios of C_{2} to C_{1} are needed to make a variable gain amplifier with gain equal to any integer between 1 and 8 ?
b. for a given open-loop op-amp gain A , which of the closed-loop gains above has the worst gain error? (you may assume that $\mathrm{C}_{\mathrm{P}}=0$)
c. if the desired closed-loop gain accuracy is 0.4% regardless of gain setting, what is the minimum open-loop gain necessary for the op-amp?
d. if the amplifier must settle to within 0.4% of the correct value within 10 us , what is the minimum unity gain bandwidth of the op-amp?
9. [ee240A] For the folded cascode above, how does performance change
a. if the bias current drops to 1 uA and all devices are biased at roughly $\mathrm{V}_{\mathrm{gs}}=\mathrm{V}_{\mathrm{t}}$?
b. if the bias current remains 100 uA , but the length of all devices is changed to 14 nm , and the widths vary from 200 nm to 400 nm as appropriate for a current density of $0.5 \mathrm{~mA} / \mathrm{um}$? Assume that the load capacitance is comparable to the input capacitance (which is?).
