Homework Assignment \#10

$$
\text { Due by online submission Wednesday } 11 / 20 / 2019
$$

1. In the TI document on SAR ADCs, http://www.ti.com.cn/cn/lit/an/slyt176/slyt176.pdf
a. does the comparator compare at ground or the top rail?
b. Assuming a single-sided supply $\left(\mathrm{V}_{\mathrm{DDA}}, 0\right)$ does the voltage on the inputs to the comparator stay between the supply rails?
2. Take a look at the LTC2357-18, an 18 bit SAR ADC http://www.analog.com/media/en/technical-documentation/data-sheets/235718f.pdf
a. In the functional block diagram on page 17 , how many blocks do you recognize from your project? (hint: everything but the PGA and temp sensor, although there probably is a temp sensor
b. If the full-scale input voltage is $10.24 \mathrm{~V}(+/-5.12 \mathrm{~V})$ what is the voltage step of 1 LSB ?
c. How many clock cycles will an 18 bit SAR take to digitize a sample?
3. Take a look at the ADC schematic on slide 9 of the "Working with ADCs, Op-amps and the MSP430" http://www.ti.com/lit/ml/slap123/slap123.pdf

When S_{1} and S_{c} are closed, and all capacitor bottom plate switches are in the green position,
a. What is the total capacitance $\mathrm{C}_{\text {тот }}$ between V_{S} and V_{+}?
b. What is the charge on the top plate of that capacitance?

Now assume that S_{1} and S_{c} are opened, all bottom plate switches are switched to $V_{S S}=G N D$, except the switch on 16 C which is switched to $\mathrm{V}_{\text {REF }}$.
c. What is the total capacitance C_{1} between VREF and $\mathrm{V}+$?
d. What is the total capacitance C_{2} between GND and $\mathrm{V}+$?
e. What is the voltage on $\mathrm{V}+$ (in terms of VS and VREF)?

Now assume that a value $B=b_{4} b_{3} b_{2} b_{1} b_{0}$ (a number between 0 and 31) is applied to the bottom plate switches, where $b_{i}=1$ means that the switch is on $V_{\text {REF }}$, and $b_{i}=0$ means that the switch is on GND.
f. What is the total capacitance C_{1} between $\mathrm{V}_{\text {REF }}$ and $\mathrm{V}+$?
g. What is the total capacitance C_{2} between GND and $\mathrm{V}+$?
h . What is the voltage on $\mathrm{V}+$ (in terms of VS and VREF)?
i. Now assume an input voltage $\mathrm{V}_{\mathrm{S}}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=1 \mathrm{~V}$, and draw the voltage on $\mathrm{V}+$ in each of the different clock phases assuming a SAR loads the analog value during the first clock period, and then switches each of the bits b_{i} in subsequent periods based on the signal from the comparator. You should get something along the lines of what is done on slide 10 , which is conceptually what is going on, but not actually what the voltages will be (or the right number of bits).
4. In a particular process, long channel (1um) devices can be very roughly modeled as quadratic with $\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}}=200 \mathrm{uA} / \mathrm{V} 2, \mu_{\mathrm{p}} \mathrm{C}_{\mathrm{ox}}=100 \mathrm{uA} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=0.3, \mathrm{~V}_{\mathrm{tp}}=-0.3, \lambda_{\mathrm{n}}=\lambda_{\mathrm{p}}=1 /(10 \mathrm{~V})$. If you have a 100 nF capacitor that starts with a voltage of 1 V , and a switch to ground implemented as an NMOS transistor with $\mathrm{W} / \mathrm{L}=10 \mathrm{u} / 1 \mathrm{um}$
a. Carefully sketch I_{d} vs $\mathrm{V}_{\mathrm{ds}}=0 . .1$ for the transistor with $\mathrm{Vgs}=0.4 \mathrm{~V}$.
b. What is the "on resistance" $\mathrm{R}_{\text {on }}$ of the MOSFET?
c. Assuming that the gate voltage of the NMOS devices rises from 0 to 0.4 V at $\mathrm{t}=0$,
i. carefully sketch the capacitor voltage vs. time, clearly showing the shape for when $\mathrm{V}_{\mathrm{C}}>0.1 \mathrm{~V}$, and the time that it takes to reach 0.1 V .
ii. What is an upper bound on the time that it takes for VC to fall from 0.1 V to 5% of that value, 5 mV (hint: think $2 \mathrm{R}_{\text {on }}$)
iii. The sum of these times is roughly the time required to settle to 0.4% accuracy when starting with a large voltage. What is that sum?
5. A PMOS-input folded cascode with a supply from 0 to $\mathrm{V}_{\text {DDA }}$ in unity gain feedback has its positive input driven from 1 V to ground. With only a capacitive load, what is the initial rate of change of the output voltage? What is the first device to drop out of saturation? Estimate the output voltage after the amplifier has settled.
6. You add a PMOS-input common source amplifier as a second stage to the output of the amplifier in the previous problem (and stabilize with a Miller capacitor!). With only a capacitive load, estimate the output voltage after the amplifier has settled, and the time to get within 0.1% of that value. (Hint: problem 2?)
7. A thin oxide NMOS transistor is used as the ϕ_{2} switch shorting C_{i} to ground in the same PGA amplifier. When ϕ_{2} is high, the gate oxide tunneling current density is $1 \mathrm{~A} / \mathrm{cm} 2$. The transistor is $1 \mathrm{um} / 0.1 \mathrm{um}$.
a. What is the gate area, and the tunneling current through the gate to the drain?
b. What is the rate of change of the output voltage due to the gate leakage (tunneling) current?
c. How much does the output voltage fall in 5us?
8. To model the negative voltage spike on V - in the PGA, assume that the op-amp is very slow and its output stays at ground while an ideal ϕ_{2} switch closes. Assume that $\mathrm{C}_{\mathrm{f}}=100 \mathrm{fF}$ now.
a. If $\mathrm{V}_{\mathrm{in}}=1 \mathrm{~V}$, and gain $=1$, what is the voltage on V - just after ϕ_{2} goes high?
b. If $\mathrm{V}_{\mathrm{in}}=1 / 8 \mathrm{~V}$, and gain $=8$, what is the voltage on V - just after ϕ_{2} goes high?
c. If $\mathrm{V}-=-0.5 \mathrm{~V}$, draw a cross section of the ϕ_{1} switch, label the voltages just after ϕ_{2} goes high, and show which diode is forward biased. When current flows in that diode, does the output voltage end up higher or lower than it should be (after settling)?
d. Now assume that the ϕ_{2} switch has a series resistance of $10 \mathrm{k} \Omega$, and calculate the RC time constant of the ϕ_{2} switch effect on V-
e. If your op-amp has a unity-gain frequency of $20 \mathrm{Mrad} / \mathrm{s}$, what series resistance should you choose for your ϕ_{2} switch to match the op-amp and RC time constants?

Stuff related to your project specs
9. Take a look at the datasheet for the TI MSP430FG439 embedded microprocessor.
http://www.ti.com/lit/ds/symlink/msp430fg439.pdf
a. Section 5.25 has the timing specs for the ADC. What is the typical clock frequency and max conversion time with the internal oscillator? How many cycles of the internal oscillator are required to convert an analog voltage to digital, and how does that compare to the number of bits?
b. Section 5.26 has the linearity specs of this nominally 12 bit SAR ADC. Given the typical and max total unadjusted error, what is the actual number of ADC bits that you can trust?
c. Section 5.27 has the specs for the built in temperature sensor. What is the typical voltage at 0 C ? What is the expected voltage at 25 C (use $\mathrm{TC}_{\text {sensor }}$)? What is the chip-to-chip variation in the temperature sensor voltage (see note 2)
10. Take a look at the User's Guide for the same part http://www.ti.com/lit/ug/slau0561/slau056l.pdf

There are a lot of analog MUXes in Figure 22-1 for selecting how analog signals are routed to, from, and around the programmable gain op-amp. Figure out how to set all of the lower-right switches and MUXes to get a closed-loop gain of 2 from this system.

