Problem 2: compare \(O \) to \(V_{ref} \). What will be the output for \(V_i = 0 \) and \(V_i = \frac{B}{2} \)?

Do we need \(q_1 \) and \(q_2 \)? What if \(q_1 = 0 \) during \(q_2 \)?

\[V_i = V_{ref} \]

\[V_{out} = V_i - V_{ref} \]

ADC

Switches and bias circuits

Project: 3rd-FSM

Vin: stable - 1st integration

Sample

Pin: VIN

Vref:

Sample

Vin: 0V

Vin: PVA drive to 0

Sample

Vin: B

0V
Can we set \(V_{id} = V_{in} - \frac{B}{2} V_{ref} + \frac{1}{2} V_{ref} \)? Yes, w/ SC compliance.

Recall what if done for \(V_{id} \) across all of these caps?

Then doing \(V_{id} \) for \(V_{o} = \frac{B}{2} V_{ref} + V_{c} \)

How do we think?
Note that V_1 needs to be above V_{REF}

during b_2
test.

What if V_{IN} were 0V?

$V_{OUT} = V_{REF} - 0.5V$

$V_{OUT} = V_{REF} + 0.5V$

if switches are in Volen power domain

this forward biases the DB diode in PMOS

Do not forget to switch V_{OUT} if you
only use 2 stages.

Used to pull low. Device N MOS?

Refer to pull low. Device N MOS.

what is V_{IN}, 0V only?

If V_{IN} leads to high, will it settle there?

PGA - pull V_{OUT} to ground

need to pull to 0V? No, $<< 4 V$

V_{OUT} will not sit in saturate. Build

V_{OUT} probably need 2-4 stages.

V_{OUT} probably need 2-4 stages.

PGA stage F at 0V will be used.

N MOS?
If load power off, V1(V0) = 0V.

If load power on, FC operating?

Turn off power: 100mV < 200mV.

AV = 100mV

A = (100mV)/(200mV)

More switch issues

PEA Q2

ADC 0x-1

Charge injection