Project 2nd presentation Dec 23 R, 4, 6 Apple lecture, me

Final paper RPR week
Driving output to ground
Charge injection
Strong ARM

PGA:

- Drive output to ground: \(< 2 \) LSB
- Amplify accurately \([0, 1]\), or \(< 1 \) LSB

See note W12-L2 p 3 & 4

Charge injection:

- \(V = 0, V_{\text{d}} \)

\[Q_{\text{ch}} = (V_{\text{d}} - V_{\text{t}}) C_{\text{ox}} \]

Fast falling edge: assume \(\frac{1}{2} Q_{\text{ch}} \) sees \(\frac{1}{2} \)

Slow falling edge: channel charge equal to source

\[Q_{\text{ch}} = V_{\text{t}} C_{\text{ox}} W \]

Channel source at \(V_{\text{t}} \)
Say \(C_{OE} = 1 \text{ pF} \), \(W = 1 \text{ mm} \), \(C_2 = 1 \text{ pF}

\[V_0 = V_{-} = V_{\text{in}} C_1 \]
\[+ V_{-} C_{\text{in}} \]
\[+ (V_{-} - V_0) C_2 \] \(= 0 \)
\[-V_0 \text{ mV} \]

Choose minimum \(C_2 = 4 \text{ pF} \), say \(V_2 \) device

\[V_0 = \frac{C_2}{C_2 + 1 \text{ pF}} \cdot \frac{1 \text{ pF}}{4 \text{ pF}} \cdot (0.6 \text{ V}) \]

150 mV error!

Many clever ways to improve

Simplest is to make \(C_2 \gg C_{OE} \)

If \(C_2 = 100 \text{ pF} \), error = 6 mV

Make switch small, \(C_2 \) big ⇒ slow response

ADC comparator
Fine to use op-amp

Compare \(V_0 \) with \(V_{\text{ref}} \)

\(\Rightarrow \) NMOS input

Like \(V_{\text{in}} < 2 \times \text{LSB} \) to create clear \(Q_1 \) output

\(Av = 1000 \) or more useful

Wall divided output

Size appropriately

What about other switches?

\[V_5, S_1 \]

\[V_5, S_2 \]

\[S_3 \]

If \(S_1 \) turns off before \(S_2 \) ⇒ problem

\(Q_1 \) gets extra charge

Delay \(S_1 \) rel \(S_2 \): \(P_1 \) delay = \(\frac{1}{S_2} \) \(S_1 \)

\(C_2 \) injection affects \(ADC \)
Strong ARM latch
- clocked comparator
- faster, lower power than op-amp-based
- easy to trim input offset.
Core element: cross-coupled inverters

RHP real pole

Phase 1, CK=0

Phase 2, CK=1

Say $V_+ > V_-$

$I_{OH} > I_{OH}$

$2L$ turns on
$2L$ turns off
3R on keeps 3L off
2R on 2L off

Strombahn Switches feed - order side delay
rail-to-rail output
Can auto-trim all boot
- add small capacitors of both

P and Q

Format: 1000+times3, if balanced results

Keep copulas

Add external burst to locally to keep

C = CQ