PROBLEM SET #1

Issued: Tuesday, Jan.20, 2009

Due: Tuesday, Feb.3, 2009, 6:00 p.m. in the EE 140 homework box in 240 Cory

- 1. (a) Calculate the built-in potential, depletion layer depths, and maximum field in a plane-abrupt *pn* junction in silicon with doping densities $N_A = 8 \times 10^{15}$ atoms/cm³ and $N_D = 10^{17}$ atoms/cm³. Assume a reverse bias of 5V. (b) Repeat (a) for zero external bias and 0.3V forward bias.
- 2. Calculate the zero-bias junction capacitance for the example in Problem 1, and also calculate the value at 5V reverse bias and 0.3V forward bias. Assume a junction area of 2×10^{-5} cm².
- **3.** Derive and sketch the complete small-signal equivalent circuit for a bipolar transistor at $I_C = 0.2 \text{ mA}$, $V_{CB} = 3\text{V}$, $V_{CS} = 4\text{V}$. Device parameters are: $C_{je0} = 20\text{fF}$, $C_{\mu0} = 10\text{fF}$, $C_{CS0} = 20\text{fF}$, $\beta_0 = 100$, $\tau_F = 15\text{ps}$, $\eta = 10^{-3}$, $r_b = 200\Omega$, $r_c = 100\Omega$, $r_{ex} = 4\Omega$, and $r_{\mu} = 5\beta_0 r_o$. Assume $\psi_0 = 0.55\text{V}$ for all junctions.
- **4.** An NMOS transistor has parameters $W = 10\mu \text{m}$, $L = 1\mu \text{m}$, $k' = 194 \,\mu\text{A/V}^2$, $\lambda = 0.024 \,\text{V}^{-1}$, $t_{ox} = 80\text{\AA}$, $\Phi_f = 0.3 \,\text{V}$, $V_{t0} = 0.6 \,\text{V}$, and $N_A = 5 \times 10^{15} \,\text{atoms/cm}^3$. Ignore velocity saturation effects.
 - (a) Sketch the I_D - V_{DS} characteristics for V_{DS} from 0 to 3V and $V_{GS} = 0.5$ V, 1.5V, and 3V. Assume $V_{SB} = 0$.
 - (**b**) Sketch the I_D - V_{GS} characteristics for $V_{DS} = 2V$ as V_{GS} varies from 0 to 2V with $V_{SB} = 0, 0.5V$, and 1V.
- 5. Derive and sketch the complete small-signal equivalent circuit for the device of Problem 4 with $V_{GS} = 1$ V, $V_{DS} = 2$ V, and $V_{SB} = 1$ V. Use $\psi_0 = 0.7$ V, $C_{sb0} = C_{db0} = 20$ fF, and $C_{gb} = 5$ fF. Overlap capacitance from gate to source and gate to drain is 2fF.
- 6. Razavi, Chapter 2: Problem 2.15.