PROBLEM SET #10

Issued: Tuesday, April 14, 2009

Due: Tuesday, April 28, 2009, 8:00 p.m. in the EE 140 homework box in 240 Cory

1. This problem concerns the CMOS operational amplifier shown in Fig. PS10-1.

Variable	NMOS	PMOS	Unit
X_d	0.1	0.1	μm
dX_d/dV_{ds}	0.02	0.04	μm/V
t_{ox}	80	80	А
μ	450	150	cm ² /V-s
V_T	0.7	0.7	V
γ	0	0	V ^{1/2}

Table PS10-1

(a) Calculate the open-loop voltage gain, unity-gain bandwidth, and slew rate, for the circuit in Fig. PS10-1(a). Use the parameters of Table PS10-1. Assume that the gate of M_9 is connected to the positive power supply and that the W/L ratio of M_9 has been chosen to cancel the right half-plane zero. Compare your results with a SPICE simulation.

- (b) If the circuit of Fig. PS10-1(b) is used to generate the voltage to be applied to the gate of M_9 in Fig. PS10-1(a), calculate the W/L ratio of M_9 required to move the right-half plane zero to infinity. Let $V_{DD} = 1.5$ V and $I_s = 200 \ \mu$ A. Use L = 1 um for all transistors, $W_{13} = W_{10} = 150 \ \mu$ m, and $W_{11} = W_{12} = 100 \ \mu$ m. Use Table PS10-1 for other parameters.
- (c) Assuming that the zero has been moved to infinity, determine the maximum load capacitance that can be attached directly to the output of the circuit of Fig PS10-1(a) and still maintain a phase margin of 45° . Neglect all higher order poles except any due to the load capacitance. Use the value of *W/L* ratio obtained in part (b) for M_9 with the bias circuit of Fig. PS10-1(b). Ignore junction capacitance for all transistors. Use Table PS10-1 for other parameters.
- 2. The amplifier a(s) has one real negative pole and is configured as an inverting feedback amplifier as shown in Fig. PS10-2.
 - (a) Calculate the DC gain of the amplifier a(s) such that the static gain error of the feedback amplifier is 0.05%.
 - (b) Calculate the pole location such that the settling time is 10ns for 0.05% accuracy.
 - (c) If the open loop amplifier has a second pole that produces 60% phase margin for the feedback configuration in Figure 2, what is the new settling time? For this part you can use either analytical methods or numerical simulations.

Figure PS10-2

- 3. Razavi, Chapter 10: Problem 10.9.
- **4.** Razavi, Chapter 10: Problem 10.10.
- 5. Razavi, Chapter 9: Problem 9.3.