
PROBLEM SET #2

Issued: Tuesday, Feb.3, 2009

Due: Tuesday, Feb.10, 2009, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Use inspection analysis to write expressions for the input resistance R_i , output resistance R_o , and gain v_o/v_s for each of the amplifiers below. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., g_m , r_p , r_o , β , etc.) for the transistors used. For each circuit, assume that all capacitors shown have infinite values.

- 2. Calculate numerical values for the input resistance R_i , output resistance R_o , gain v_o/v_s , and maximum amplitude of the signal source that still provides linear operation, for the circuit in Fig. PS2.1(d) if $R_1 = 20k\Omega$, $R_2 = 62k\Omega$, $R_E = 3.9k\Omega$, $R_c = 8.2k\Omega$, and $V_{CC} = 12V$. Use $\beta = 75$ and an Early voltage $V_A = 60V$.
- **3.** Determine expressions for the small-signal input resistance, output resistance, and gain, for each of the circuits in Razavi, Fig. 3.67, except for (b). Use inspection analysis where possible, but resort to the full small-signal model if you deem it necessary.

- 4. For the Darlington emitter follower of Fig. PS2.2.
 - (a) Determine the dc collector currents in Q_1 and Q_2 , and then the small-signal input resistance and voltage gain. Neglect r_{μ} , r_b and r_o , and assume that $V_{BE}(on) = 0.7$ V, $\beta=200$, $V_T=26$ mV(300k). Use inspection analysis wherever possible.
 - (b) Determine the -3dB corner frequency (f_H) of the gain using open circuit time-constant methods. Assume $V_{BE}(on) = 0.7$ V, $\beta=200$, $V_T=26$ mV(300k), $f_T=500$ MHz at $I_C=1$ mA, $C_{\mu}=0.4$ pF, $C_{je}=2$ pF, $C_{CS}=1$ pF, and neglect r_{μ} , r_b and r_o . (Note: use the DC operating point found in (a) and assume zero source impedance.)

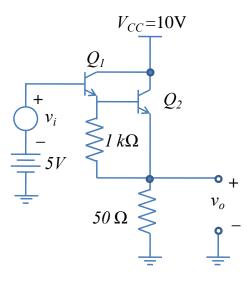


Fig. PS2.2