PROBLEM SET \#2

Issued: Tuesday, Feb.3, 2009
Due: Tuesday, Feb.10, 2009, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Use inspection analysis to write expressions for the input resistance R_{i}, output resistance R_{o}, and gain v_{o} / v_{S} for each of the amplifiers below. The expressions should be in terms of the given elements and parameters of the small-signal equivalent circuits (i.e., $g_{m}, r_{p}, r_{o}, \beta$, etc.) for the transistors used. For each circuit, assume that all capacitors shown have infinite values.

Fig. PS2.1
2. Calculate numerical values for the input resistance R_{i}, output resistance R_{o}, gain v_{o} / v_{S}, and maximum amplitude of the signal source that still provides linear operation, for the circuit in Fig. PS2.1(d) if $R_{1}=20 \mathrm{k} \Omega, R_{2}=62 \mathrm{k} \Omega, R_{E}=3.9 \mathrm{k} \Omega, R_{c}=8.2 \mathrm{k} \Omega$, and $V_{C C}=12 \mathrm{~V}$. Use $\beta=75$ and an Early voltage $V_{A}=60 \mathrm{~V}$.
3. Determine expressions for the small-signal input resistance, output resistance, and gain, for each of the circuits in Razavi, Fig. 3.67, except for (b). Use inspection analysis where possible, but resort to the full small-signal model if you deem it necessary.
4. For the Darlington emitter follower of Fig. PS2.2.
(a) Determine the dc collector currents in Q_{1} and Q_{2}, and then the small-signal input resistance and voltage gain. Neglect r_{μ}, r_{b} and r_{0}, and assume that $V_{B E}(o n)=0.7 \mathrm{~V}, \beta=200$, $V_{T}=26 \mathrm{mV}(300 \mathrm{k})$. Use inspection analysis wherever possible.
(b) Determine the -3 dB corner frequency $\left(f_{H}\right)$ of the gain using open circuit time-constant methods. Assume $V_{B E}($ on $)=0.7 \mathrm{~V}, \beta=200, V_{T}=26 \mathrm{mV}(300 \mathrm{k}), f_{T}=500 \mathrm{MHz}$ at $I_{C}=1 \mathrm{~mA}$, $C_{\mu}=0.4 \mathrm{pF}, C_{j e}=2 \mathrm{pF}, C_{C S}=1 \mathrm{pF}$, and neglect r_{μ}, r_{b} and r_{o}. (Note: use the DC operating point found in (a) and assume zero source impedance.)

Fig. PS2.2

