PROBLEM SET #5

Issued: Tuesday, Feb. 24, 2009

Due: Tuesday, March 3, 2009, 6:00 p.m. in the EE 140 homework box in 240 Cory

- 1. Razavi, Chapter 5: Problem 5.2.
- 2. Design the Widlar current source shown in Figure PS5.2 to produces 5 μ A output current. Use identical transistors, $V_{CC} = 30$ V, and $R_1 = 30$ k Ω . Find the output resistance.

BJT Parameters: $\beta = 200$, $V_A = 130$ V, $V_{BE,ON} = 0.7$ V

Figure PS5.2

3. This problem concerns the simple MOS current mirror shown in Figure PS5.3a.

Figure PS5.3a

- (a) Design the current mirror such that all of the following is satisfied:
 - i. The currents $I_2=0.5$ mA and $I_3=2$ mA (approximately).
 - ii. The minimum output voltage for which M_2 and M_3 work as current sources is 200mV.
 - iii. The output currents change less than 1% for a change in output voltage of 1V.
 - iv. All transistors should have the same channel length.

You are to minimize the total circuit area which is approximately given by

$$A = \sum_{i=1}^{3} W_i L_i + \beta R_1$$

The parameter λ can be calculated as $\lambda = \frac{\alpha}{L}$. α and β are constants.

$$\alpha = 0.02 \frac{\mu m}{V}, \quad \beta = 0.2 \frac{\mu m^2}{\Omega}, \quad C_{ox} = 5 \frac{fF}{\mu m^2}, \quad \mu_n = 450 \frac{cm^2}{Vs}, \quad V_{th0} = 0.6V$$

(b) A layout designer used long and narrow wires to connect sources of M_1 , M_2 , and M_3 , which resulted in small parasitic resistances $R_p=2\Omega$, as shown in Figure PS5.3b. What are the new values of I_2 and I_3 ? You can use numerical methods if needed.

Figure PS5.3b

- 4. Razavi, Chapter 5: Problem 5.6.
- 5. Design the circuit shown in Figure PS5.5 to meet the following constraints:
 - (a) Transistor M_2 operates in the saturated region for values of V_{OUT} to within 0.2 V of ground.
 - (**b**) The output current must be 50 μ A.
 - (c) The output current must change less than 0.02% for a change in output voltage of 1 V.

You are to minimize the total device area within the given constraints. Here the device area will be taken to be the total gate area ($W \times L$ product). Ignore the body effect for simplicity.

Make all devices identical except M_4 . Use SPICE to check your design and also to plot the I_{OUT} - V_{OUT} characteristic for V_{OUT} from 0 to 3 V. Use the following process parameters: t_{ox} =8 nm, μ_n =450 cm²/VS, L_d =0.09 μ m, dX_d/dV_{DS} =0.02 μ m/V (channel length modulation parameter, use it to get λ).

Figure PS5.5