PROBLEM SET \#5

Issued: Tuesday, Feb. 24, 2009
Due: Tuesday, March 3, 2009, 6:00 p.m. in the EE 140 homework box in 240 Cory

1. Razavi, Chapter 5: Problem 5.2.
2. Design the Widlar current source shown in Figure PS5.2 to produces $5 \mu \mathrm{~A}$ output current. Use identical transistors, $V_{C C}=30 \mathrm{~V}$, and $R_{1}=30 \mathrm{k} \Omega$. Find the output resistance.
BJT Parameters: $\beta=200, V_{A}=130 \mathrm{~V}, V_{B E, O N}=0.7 \mathrm{~V}$

Figure PS5.2
3. This problem concerns the simple MOS current mirror shown in Figure PS5.3a.

Figure PS5.3a
(a) Design the current mirror such that all of the following is satisfied:
i. The currents $I_{2}=0.5 \mathrm{~mA}$ and $I_{3}=2 \mathrm{~mA}$ (approximately).
ii. The minimum output voltage for which M_{2} and M_{3} work as current sources is 200 mV .
iii. The output currents change less than 1% for a change in output voltage of 1 V .
iv. All transistors should have the same channel length.

You are to minimize the total circuit area which is approximately given by

$$
A=\sum_{i=1}^{3} W_{i} L_{i}+\beta R_{1}
$$

The parameter λ can be calculated as $\lambda=\frac{\alpha}{L} . \alpha$ and β are constants.

$$
\alpha=0.02 \frac{\mu m}{V}, \quad \beta=0.2 \frac{\mu m^{2}}{\Omega}, \quad C_{o x}=5 \frac{f F}{\mu m^{2}}, \quad \mu_{n}=450 \frac{\mathrm{~cm}^{2}}{V S}, \quad V_{t h 0}=0.6 \mathrm{~V}
$$

(b) A layout designer used long and narrow wires to connect sources of M_{1}, M_{2}, and M_{3}, which resulted in small parasitic resistances $R_{p}=2 \Omega$, as shown in Figure PS5.3b. What are the new values of I_{2} and I_{3} ? You can use numerical methods if needed.

Figure PS5.3b
4. Razavi, Chapter 5: Problem 5.6.
5. Design the circuit shown in Figure PS5.5 to meet the following constraints:
(a) Transistor M_{2} operates in the saturated region for values of $V_{\text {OUT }}$ to within 0.2 V of ground.
(b) The output current must be $50 \mu \mathrm{~A}$.
(c) The output current must change less than 0.02% for a change in output voltage of 1 V .

You are to minimize the total device area within the given constraints. Here the device area will be taken to be the total gate area ($W \times L$ product). Ignore the body effect for simplicity.

Make all devices identical except M_{4}. Use SPICE to check your design and also to plot the $I_{\text {OUT }}-V_{\text {OUT }}$ characteristic for $V_{\text {OUT }}$ from 0 to 3 V . Use the following process parameters: $t_{o x}=8$ $\mathrm{nm}, \mu_{n}=450 \mathrm{~cm}^{2} / \mathrm{VS}, L_{d}=0.09 \mu \mathrm{~m}, d X_{d} / d V_{D S}=0.02 \mu \mathrm{~m} / \mathrm{V}$ (channel length modulation parameter, use it to get λ).

Figure PS5.5

